437 research outputs found

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    Multi Layered Multi Task Marker Based Interaction in Information Rich Virtual Environments

    Get PDF
    Simple and cheap interaction has a key role in the operation and exploration of any Virtual Environment (VE). In this paper, we propose an interaction technique that provides two different ways of interaction (information and control) on complex objects in a simple and computationally cheap way. The interaction is based on the use of multiple embedded markers in a specialized manner. The proposed marker like an interaction peripheral works just like a touch paid which can perform any type of interaction in a 3D VE. The proposed marker is not only used for interaction with Augmented Reality (AR), but also with Mixed Reality. A biological virtual learning application is developed which is used for evaluation and experimentation. We conducted our experiments in two phases. First, we compared a simple VE with the proposed layered VE. Second, a comparative study is conducted between the proposed marker, a simple layered marker, and multiple single markers. We found the proposed marker with improved learning, easiness in interaction, and comparatively less task execution time. The results gave improved learning for layered VE as compared to simple VE

    Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice

    Get PDF
    The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo.Swati Dawar, Nur Hezrin Shahrin, Nikolina Sladojevic, Richard J D, Andrea, Loretta Dorstyn, Devendra K Hiwase and Sharad Kuma

    The pebbling comonad in finite model theory

    Get PDF
    Pebble games are a powerful tool in the study of finite model theory, constraint satisfaction and database theory. Monads and comonads are basic notions of category theory which are widely used in semantics of computation and in modern functional programming. We show that existential k-pebble games have a natural comonadic formulation. Winning strategies for Duplicator in the k-pebble game for structures A and B are equivalent to morphisms from A to B in the coKleisli category for this comonad. This leads on to comonadic characterisations of a number of central concepts in Finite Model Theory: - Isomorphism in the co-Kleisli category characterises elementary equivalence in the k-variable logic with counting quantifiers. - Symmetric games corresponding to equivalence in full k-variable logic are also characterized. - The treewidth of a structure A is characterised in terms of its coalgebra number: the least k for which there is a coalgebra structure on A for the k-pebbling comonad. - Co-Kleisli morphisms are used to characterize strong consistency, and to give an account of a Cai-F\"urer-Immerman construction. - The k-pebbling comonad is also used to give semantics to a novel modal operator. These results lay the basis for some new and promising connections between two areas within logic in computer science which have largely been disjoint: (1) finite and algorithmic model theory, and (2) semantics and categorical structures of computation

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    Image, brand and price info: do they always matter the same?

    Get PDF
    We study attention processes to brand, price and visual information about products in online retailing websites, simultaneously considering the effects of consumers’ goals, purchase category and consumers’ statements. We use an intra-subject experimental design, simulated web stores and a combination of observational eye-tracking data and declarative measures. Image information about the product is the more important stimulus, regardless of the task at hand or the store involved. The roles of brand and price information are dependent on the product category and the purchase task involved. Declarative measures of relative brand importance are found to be positively related with its observed importance

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    CuInSe2 thin films produced by rf sputtering in Ar/H2 atmospheres

    Get PDF
    Structural, compositional, optical, and electrical properties of CuInSe2thin filmsgrown by rf reactive sputtering from a Se excess target in Ar/H2 atmospheres are presented. The addition of H2 to the sputtering atmospheres allows the control of stoichiometry of films giving rise to remarkable changes in the film properties. Variation of substrate temperature causes changes in film composition because of the variation of hydrogen reactivity at the substrate. Measurements of resistivity at variable temperatures indicate a hopping conduction mechanism through gap states for films grown at low temperature (100–250 °C), the existence of three acceptor levels at about 0.046, 0.098, and 0.144 eV above valence band for films grown at intermediate temperature (250–350 °C), and a pseudometallic behavior for film grown at high temperatures (350–450 °C). Chalcopyrite polycrystalline thin films of CuInSe2 with an average grain size of 1 ÎŒm, an optical gap of 1.01 eV, and resistivities from 10− 1 to 103 Ω cm can be obtained by adding 1.5% of H2 to the sputtering atmosphere and by varying the substrate temperature from 300 to 400 °C
    • 

    corecore