2,944 research outputs found

    Development and testing of methodology for evaluating the performance of multi-input/multi-output digital control systems

    Get PDF
    A Controller Performance Evaluation (CPE) methodology for multi-input/multi-output digital control systems was developed and tested on an aeroelastic wind-tunnel model. Modern signal processing methods were used to implement control laws and to acquire time domain data of the whole system (controller and plant) from which appropriate transfer matrices of the control system could be generated. Matrix computational procedures were used to calculate singular values of return-difference matrices at the plant input and output points to evaluate the performance of the control system. The CPE procedures effectively identified potentially destabilizing controllers and confirmed the satisfactory performance of stabilizing ones

    Drug-Phospholipid Complex-loaded Matrix Film Formulation for the Enhanced Transdermal Delivery of Quercetin

    Get PDF
    A novel quercetin-phospholipid-complex(QPLC)-loaded matrix film for improved transdermal delivery of quercetin was developed. The QPLC formulation, prepared using a solvent-evaporation method, was optimized using a central-composite design. The optimized QPLC formulation was characterized by particle size and zeta potential analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). QPLC formulation was functionally evaluated for solubility and in vitro dissolution of quercetin. Matrix films of pure quercetin (Q-MF)or QPLC QPLC-MF) were prepared using a solvent casting method. The prepared Q-MF and QPLC-MF were characterized for weight uniformity, folding endurance, moisture content, and moisture uptake. The films were also functionally characterized for in vitro diffusion of quercetin through a dialysis membrane and ex vivo permeability of quercetin across rat skin. Finally, the anti-inflammatory activity of the films was evaluated on carrageenan-induced paw edema in Wistar albino rats. The experimental design identified the optimal formulation and process variables for the preparation of QPLC. The validation of the obtained model using these values confirmed the suitability and robustness of the model. The physical-chemical characterization of the prepared QPLC supported the formation of a stable complex. The solubility analysis of QPLC showed a 22-fold increase in quercetin aqueous solubility, compared to pure quercetin. The dissolution results exhibited a significantly higher rate and extent of quercetin dissolution from QPLC compared to that of pure quercetin. The permeability of quercetin from Q-MF and QPLC-MF across rat skin mirrored those obtained from the dissolution studies. Topical application of QPLC-MF exhibited a significant (p\u3c0.05) inhibition of carrageenan-induced paw edema in rats compared to that of Q-MF. This study provides a promising combination approach, i.e., phospholipid-based complexation and transdermal film formulation for improved transdermal delivery of quercetin and similar pharmacologically active phytoconstituents

    Solvent extraction and separation of zinc and cobalt from ammoniacal solution

    Get PDF
    A process was developed to recover Zn and Co by solvent extraction from the raffinate generated during processing of sea nodules. From a model ammoniacal solution containing 0.2 g/L Zn or 0.2 g/L Co, extraction of Zn and Co by Versatic acid was studied. A maximum of 87% Zn was extracted with 1M Versatic acid in single stage, whereas extraction of Co was negligible due to its higher oxidation state. When Co(III) was reduced to Co(II) by the addition of cobalt powder, 1M Versatic acid extracted 76% Co in a single stage. From the McCabe Thiele diagram number of counter current extraction stages required for complete recovery of Zn and Co from ammoniacal solution was determined. Simulation of counter current extraction of Zn and Co was also carried out. Thus, this process can be used to recover Zn, leaving Co in the raffinate. Then Co can be recovered by solvent extraction with Versatic acid after reducing Co(III) to Co(II) state

    Incidence of cetonid beetles, Protaetia alboguttata (Vigors) on karonda, Carissa carandas

    Get PDF
    Severe infestation of cetonid beetles, Protaetia alboguttata (Vigors) has been noticed on karonda at the experimental station of Indian Institute of Horticultural Research, Bengaluru during the year 2013. The mean damage on the ripe fruits was found to be 22.40+2.50% with a range of 15.00 – 30.00%. Considering the polyphagy of cetoniids, these beetles can pose direct threat to the cultivation of karonda

    Variability of Low-ionization Broad Absorption Line Quasars Based on Multi-epoch Spectra from The Sloan Digital Sky Survey

    Get PDF
    We present absorption variability results for 134 bona fide \mgii\ broad absorption line (BAL) quasars at 0.46~≲z≲\lesssim z \lesssim~2.3 covering days to ∼\sim 10 yr in the rest frame. We use multiple-epoch spectra from the Sloan Digital Sky Survey, which has delivered the largest such BAL-variability sample ever studied. \mgii-BAL identifications and related measurements are compiled and presented in a catalog. We find a remarkable time-dependent asymmetry in EW variation from the sample, such that weakening troughs outnumber strengthening troughs, the first report of such a phenomenon in BAL variability. Our investigations of the sample further reveal that (i) the frequency of BAL variability is significantly lower (typically by a factor of 2) than that from high-ionization BALQSO samples; (ii) \mgii\ BAL absorbers tend to have relatively high optical depths and small covering factors along our line of sight; (iii) there is no significant EW-variability correlation between \mgii\ troughs at different velocities in the same quasar; and (iv) the EW-variability correlation between \mgii\ and \aliii\ BALs is significantly stronger than that between \mgii\ and \civ\ BALs at the same velocities. These observational results can be explained by a combined transverse-motion/ionization-change scenario, where transverse motions likely dominate the strengthening BALs while ionization changes and/or other mechanisms dominate the weakening BALs.Comment: 24 pages, accepted for publication in ApJ

    X-ray and multi-epoch optical/UV investigations of BAL to non-BAL quasar transformations

    Full text link
    We report on an X-ray and optical/UV study of eight Broad Absorption Line (BAL) to non-BAL transforming quasars at z ≈ z\,\approx\,1.7-2.2 over 0.29-4.95 rest-frame years with at least three spectroscopic epochs for each quasar from the SDSS, BOSS, GeminiGemini, and ARC 3.5-m telescopes. New ChandraChandra observations obtained for these objects show their values of αox\alpha_{\rm ox} and Δαox\Delta{\alpha}_{\rm ox}, as well as their spectral energy distributions, are consistent with those of non-BAL quasars. Moreover, our targets have X-ray spectral shapes that are, on average, consistent with weakened absorption with an effective power-law photon index of Γeff = 1.69−0.25+0.25\Gamma_{\rm eff}\,=\,1.69^{+0.25}_{-0.25}. The newer GeminiGemini and ARC 3.5-m spectra reveal that the BAL troughs have remained absent since the BOSS observations where the BAL disappearance was discovered. The X-ray and optical/UV results in tandem are consistent with at least the X-ray absorbing material moving out of the line-of-sight, leaving an X-ray unabsorbed non-BAL quasar. The UV absorber might have become more highly ionized (in a shielding-gas scenario) or also moved out of the line-of-sight (in a wind-clumping scenario).Comment: 14 pages, 5 figures, Accepted for publication in MNRA

    Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS)

    Get PDF
    One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, χ(q,ω)\chi({\bf q},\omega). The imaginary part, χ′′(q,ω)\chi''({\bf q},\omega), defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. χ\chi quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure χ(q,ω)\chi({\bf q},\omega) at the meV energy scale relevant to modern elecronic materials. Here, we demonstrate a way to measure χ\chi with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS). This approach, which we refer to here as "M-EELS," allows direct measurement of χ′′(q,ω)\chi''({\bf q},\omega) with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-q excitations in the optimally-doped high temperature superconductor, Bi2_2Sr2_2CaCu2_2O8+x_{8+x} (Bi2212), which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.Comment: 26 pages, 10 sections, 7 figures, and an appendi
    • …
    corecore