12,549 research outputs found
The responses of people to virtual humans in an immersive virtual environment
This paper presents an experiment investigating the impact of behavior and responsiveness
on social responses to virtual humans in an immersive virtual environment
(IVE). A number of responses are investigated, including presence, copresence, and
two physiological responses—heart rate and electrodermal activity (EDA). Our
findings suggest that increasing agents’ responsiveness even on a simple level can
have a significant impact on certain aspects of people’s social responses to humanoid
agents.
Despite being aware that the agents were computer-generated, participants with
higher levels of social anxiety were significantly more likely to avoid “disturbing”
them. This suggests that on some level people can respond to virtual humans as
social actors even in the absence of complex interaction.
Responses appear to be shaped both by the agents’ behaviors and by people’s expectations
of the technology. Participants experienced a significantly higher sense of
personal contact when the agents were visually responsive to them, as opposed to
static or simply moving. However, this effect diminished with experienced computer
users. Our preliminary analysis of objective heart-rate data reveals an identical pattern
of responses
Traveling sealer for contoured table Patent
Sealing apparatus for joining two pieces of frangible material
Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system
Methane (CH4) ebullition in northern peatlands is poorly quantified in part due to its high spatiotemporal variability. In this study, a dynamic flux chamber (DFC) system was used to continuously measure CH4 fluxes from a monolith of near‐surface Sphagnum peat at the laboratory scale to understand the complex behavior of CH4 ebullition. Coincident transmission ground penetrating radar measurements of gas content were also acquired at three depths within the monolith. A graphical method was developed to separate diffusion, steady ebullition, and episodic ebullition fluxes from the total CH4 flux recorded and to identify the timing and CH4 content of individual ebullition events. The results show that the application of the DFC had minimal disturbance on air‐peat CH4 exchange and estimated ebullition fluxes were not sensitive to the uncertainties associated with the graphical model. Steady and episodic ebullition fluxes were estimated to be averagely 36 ± 24% and 38 ± 24% of the total fluxes over the study period, respectively. The coupling between episodic CH4 ebullition and gas content within the three layers supports the existence of a threshold gas content regulating CH4 ebullition. However, the threshold at which active ebullition commenced varied between peat layers with a larger threshold (0.14 m3 m−3) observed in the deeper layers, suggesting that the peat physical structure controls gas bubble dynamics in peat. Temperature variation (23°C to 27°C) was likely only responsible for small episodic ebullition events from the upper peat layer, while large ebullition events from the deeper layers were most likely triggered by drops in atmospheric pressure
A priori probability that a qubit-qutrit pair is separable
We extend to arbitrarily coupled pairs of qubits (two-state quantum systems)
and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181),
which was concerned with the simplest instance of entangled quantum systems,
pairs of qubits. As in that analysis -- again on the basis of numerical
(quasi-Monte Carlo) integration results, but now in a still higher-dimensional
space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical
distinguishability) probability that arbitrarily paired qubits and qutrits are
separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where
u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive
primes). This is considerably less than the conjectured value of the Bures/SD
probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these
conjectures, in turn, rely upon ones to the effect that the SD volumes of
separable states assume certain remarkable forms, involving "primorial"
numbers. We also estimate the SD area of the boundary of separable qubit-qutrit
states, and provide preliminary calculations of the Bures/SD probability of
separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact
computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures
volume of mixed quantum states" to refine our conjecture
The effect of distressing imagery on attention to and persuasiveness of an anti-alcohol message: a gaze-tracking approach
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
Synopsis of an engineering solution for a painful problem Phantom Limb Pain
This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone
The use of ICT in the assessment of modern languages: the English context and European viewpoints
The ever increasing explosion of highly attractive multimedia resources on offer has boosted the use of information and communication technology (ICT) in the teaching and learning of modern languages. The use of ICT to assess languages is less frequent, however, although online testing is starting to develop. This paper examines the national context for the assessment of modern foreign language proficiency in England, outlines the kinds of assessment currently available and the development of electronic forms of assessment and compares the above with the survey results of a European Union (EU) funded project on current good practice in online assessment of languages in other European countries. The findings indicate that speaking is inadequately served by online testing as tests currently focus primarily on receptive language skills. The implications for future successful online testing include the incorporation of interactive skills and effective formative feedback
Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria II
- …
