6,691 research outputs found
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
Possible Detection of Causality Violation in a Non-local Scalar Model
We consider the possibility that there may be causality violation detectable
at higher energies. We take a scalar nonlocal theory containing a mass scale
as a model example and make a preliminary study of how the causality
violation can be observed. We show how to formulate an observable whose
detection would signal causality violation. We study the range of energies
(relative to ) and couplings to which the observable can be used.Comment: Latex, 30 page
The ambivalent shadow of the pre-Wilsonian rise of international law
The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation
Diffeomorphism on Horizon as an Asymptotic Isometry of Schwarzschild Black Hole
It is argued that the diffeomorphism on the horizontal sphere can be regarded
as a nontrivial asymptotic isometry of the Schwarzschild black hole. We propose
a new boundary condition of asymptotic metrics near the horizon and show that
the condition admits the local time-shift and diffeomorphism on the horizon as
the asymptotic symmetry.Comment: 18 pages, no figures, corrected some typo
Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner
By using a laser and maser in tandem, it is possible to obtain laser action
in the hot exhaust gases involved in heat engine operation. Such a "quantum
afterburner" involves the internal quantum states of working gas atoms or
molecules as well as the techniques of cavity quantum electrodynamics and is
therefore in the domain of quantum thermodynamics. As an example, it is shown
that Otto cycle engine performance can be improved beyond that of the "ideal"
Otto heat engine.Comment: 5 pages, 3 figure
Understanding of the Renormalization Program in a mathematically Rigorous Framework and an Intrinsic Mass Scale
we show there exists a mathematically consistent framework in which the
Renormalization Program can be understood in a natural manner. The framework
does not require any violations of mathematical rigor usually associated with
the Renormalization program. We use the framework of the non-local field
theories [these carry a finite mass scale (\Lambda)]and set up a finite
perturbative program. We show how this program leads to the perturbation series
of the usual renormalization program [except one difference] if the series is
restructured .We further show that the comparison becomes possible if there
exists a finite mass scale (\Lambda), with certain properties, in the Quantum
Field theory [which we take to be the scale present in the nonlocal theory]. We
give a way to estimate the scale (\Lambda). We also show that the finite
perturbation program differs from the usual renormalization program by a term;
which we propose can also be used to put a bound on (\Lambda).Comment: 19 pages, a missing equation added,a reference added and a few typos
correcte
Microscopic Black Hole Pairs in Highly-Excited States
We consider the quantum mechanics of a system consisting of two identical,
Planck-size Schwarzschild black holes revolving around their common center of
mass. We find that even in a very highly-excited state such a system has very
sharp, discrete energy eigenstates, and the system performs very rapid
transitions from a one stationary state to another. For instance, when the
system is in the 100th excited state, the life times of the energy eigenstates
are of the order of s, and the energies of gravitons released in
transitions between nearby states are of the order of eV.Comment: 22 pages, 3 figures, uses RevTe
Effects of motion in cavity QED
We consider effects of motion in cavity quantum electrodynamics experiments
where single cold atoms can now be observed inside the cavity for many Rabi
cycles. We discuss the timescales involved in the problem and the need for good
control of the atomic motion, particularly the heating due to exchange of
excitation between the atom and the cavity, in order to realize nearly unitary
dynamics of the internal atomic states and the cavity mode which is required
for several schemes of current interest such as quantum computing. Using a
simple model we establish ultimate effects of the external atomic degrees of
freedom on the action of quantum gates. The perfomance of the gate is
characterized by a measure based on the entanglement fidelity and the motional
excitation caused by the action of the gate is calculated. We find that schemes
which rely on adiabatic passage, and are not therefore critically dependent on
laser pulse areas, are very much more robust against interaction with the
external degrees of freedom of atoms in the quantum gate.Comment: 10 pages, 5 figures, REVTeX, to be published in Walls Symposium
Special Issue of Journal of Optics
A spatial assessment of the forest carbon budget for Ukraine
The spatial representation of forest cover and forest parameters is a prerequisite for undertaking a systems approach to the full and verified carbon accounting of forest ecosystems over large areas. This study focuses on Ukraine, which contains a diversity of bioclimatic conditions and natural landscapes found across Europe. Ukraine has a high potential to sequester carbon dioxide through afforestation and proper forest management. This paper presents a new 2010 forest map for Ukraine at a 60 m resolution with an accuracy of 91.6 ± 0.8% (CI 0.95), which is then applied to the calculation of the carbon budget. The forest cover map and spatially distributed forest parameters were developed through the integration of remote sensing data, forest statistics, and data collected using the Geo-Wiki application, which involves visual interpretation of very high-resolution satellite imagery. The use of this map in combination with the mapping of other forest parameters had led to a decrease in the uncertainty of the forest carbon budget for Ukraine. The application of both stock-based and flux-based methods shows that Ukrainian forests have served as a net carbon sink, absorbing 11.4 ± 1.7 Tg C year−1 in 2010, which is around 25% less than the official values reported to the United Nations Framework Convention on Climate Change
- …
