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Abstract The spatial representation of forest cover and forest parameters is a prerequisite for
undertaking a systems approach to the full and verified carbon accounting of forest ecosystems
over large areas. This study focuses on Ukraine, which contains a diversity of bioclimatic
conditions and natural landscapes found across Europe. Ukraine has a high potential to
sequester carbon dioxide through afforestation and proper forest management. This paper
presents a new 2010 forest map for Ukraine at a 60 m resolution with an accuracy of 91.6 ±
0.8% (CI 0.95), which is then applied to the calculation of the carbon budget. The forest cover
map and spatially distributed forest parameters were developed through the integration of
remote sensing data, forest statistics, and data collected using the Geo-Wiki application, which
involves visual interpretation of very high-resolution satellite imagery. The use of this map in
combination with the mapping of other forest parameters had led to a decrease in the
uncertainty of the forest carbon budget for Ukraine. The application of both stock-based and
flux-based methods shows that Ukrainian forests have served as a net carbon sink, absorbing
11.4 ± 1.7 Tg C year−1 in 2010, which is around 25% less than the official values reported to
the United Nations Framework Convention on Climate Change.
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1 Introduction

Despite recent progress in assessing carbon budgets, there is still substantial uncertainty in the
estimation of the carbon budget of forest ecosystems (Pan et al. 2011; Shvidenko et al. 2010; Pan
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et al. 2011;Metsaranta et al. 2017; Le Quéré et al. 2017). In addition to the inherent uncertainties in
the methods and models used for studying carbon cycling, there are other possible reasons for this
uncertainty, which include the absence of forest inventories in some territories, particularly those
that are not managed by state forest authorities, the lack of data for some categories of forests,
obsolete data in forest inventories, and the existence of territories with rapid changes in forest
cover, e.g., caused by disturbances or the encroachment of forests in abandoned agricultural land.
Not every country provides comprehensive information about the area or spatial distribution of
forests, in particular the distribution of tree species and their age (Schepaschenko et al. 2015), and
forest inventories, more generally, lack spatial information about the forests at an appropriate
resolution, which hinders the consistent application of a systems approach.

Improving knowledge about land cover and the parameters of forest ecosystems is of high
importance for carrying out reliable assessments of emissions and removals from the forestry
sector as well as for devising solutions to diverse ecological and forest management problems.
Providing accurate data on the spatial distribution of forests represents a substantial step towards
gaining a better understanding of full and verified carbon accounting as it is possible to more
strictly follow the principles of systems analysis; this is why it represents one of the most
promising ways to decrease uncertainties (Schepaschenko et al. 2012; Shvidenko et al. 2015).
One way of achieving this is through the use of data from remote sensing. Remote sensing helps
to improve carbon budget estimates in several ways, combining top-down and bottom-up
approaches as follows. First, satellites (optical, radar, and LIDAR instruments) are already
providing reliable estimates of important biophysical parameters of forest ecosystems such as
tree canopy parameters, growing stock, above-ground biomass and net primary production
(NPP). Measurements of carbon dioxide (CO2) and methane (CH4) concentrations in the
atmosphere are used for the assessment of the spatial distribution of the land carbon fluxes of
these important greenhouse gases using inverse modeling (Oda et al., this issue) based on, e.g.,
GOSAT (http://www.gosat.nies.go.jp/en/) or OCO-2 (http://oco.jpl.nasa.gov/). Secondly, remote
sensing data are indispensable for the delineation of land cover and forests with different tree
species and for deriving biometric characteristics such as forest stand height and above-ground
volume. Ground information is used for the validation of remote sensing products as well as for
assessing these parameters that cannot be identified using remote sensing.

Ukraine, which is the focus of this study, is unique as it is one of the largest European
countries and covers a substantial portion of eastern European diversity in natural landscapes. A
specific feature of Ukraine is the presence of a transition zone between forest and southern
forestless steppe (the xeric belt), where ecosystems are vulnerable to environmental change. In
addition, Ukraine has a high potential to sequester carbon through afforestation, since the country
has greater than 3 M ha of unproductive abandoned agricultural lands (Schierhorn et al. 2013;
Smaliychuk et al. 2016), as well as via other forest management activities (Galos et al. 2013).

The carbon budget of Ukrainian forests has been previously considered in a number of
publications. Initial attempts were undertaken by the United States of America sponsored Country
Studies Program in the 1990s (Vasilchenko et al. 1998). Several books contain methodologies that
follow the requirements of the Intergovernmental Panel on Climate Change (IPCC) (Buksha and
Pasternak 2005; Buksha et al. 2008). The forest carbon cycling of some regions has also been
considered in detail, e.g., in the forests of the Carpathians mountains (Bun et al. 2004), or the
northeastern part of the country (Pasternak 2011). Reported results on forest carbon cycling in
Ukraine at the national level (www.seia.gov.ua/seia/doccatalog/document?id=138881) havemostly
been based on forest inventory data by administrative regions, which limits the possibility for
assessing uncertainties. Spatially explicit information on forest cover and forest parameters derived
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from remote sensing have not been used in previous assessments of forest carbon cycling in
Ukraine (Shvidenko et al., 2014) although methodologies and recommendations for the use of
satellite data have been considered in detail (Buksha and Pasternak 2005) and have been used for
studying forest change, illegal logging, land abandonment, and carbon sequestration in parts of
Ukraine (Kuemmerle et al. 2009, 2011).

Hence the overall objective of this paper is to develop a spatially-explicit assessment of the
carbon budget of Ukrainian forests, which is as accurate as possible and includes the
quantification of uncertainty. The methodology is based on integrating different recently
developed remote sensing products with reference data collected through the Geo-Wiki tool
for interpretation of very high resolution satellite imagery. The forest inventory data for 2010
were then corrected based on the remote sensing information. The components of the carbon
cycle that cannot be identified from remote sensing (e.g., woody detritus, lateral fluxes) or that
require special areal approaches and additional information sources (e.g., logging, fire) were
adopted from previous assessments (Shvidenko et al. 2014). The detailed description of the
methodology for the assessment of the forest carbon budget is described in the next section.
This is followed by the presentation of the results as spatially explicit map products, their
impacts on the total carbon budget, and the values disaggregated by bioclimatic region. The
results are compared with other recent estimates, and the problems associated with uncertainty
are then discussed, followed by the conclusions.

2 Methodology

2.1 The forests of Ukraine

Overall Ukraine is a forest-poor country with a forest cover percentage of less than 16%, which is
unevenly distributed over its territory. Forests in Ukraine grow in different bioclimatic zones in the
flat part of the country’s territory, i.e., the forest zone (Polissya, with a forest cover percentage of
37%), the forest steppe (29%), and the steppe (11%), which form the major land cover type of two
mountain systems, i.e., the Carpathians (up to 50% in the mountain regions) and Crimea (with
practically no forest outside of the Crimean mountains). These regions differ by species compo-
sition, age, origin, and productivity. Coniferous forests cover 42% of the total forest area, with 32%
pine (Pinus silvestris L.), and 10% spruce (Picea abies Karst.) and fir (Abies alba Mill.). Hard
deciduous species cover 43%, of which oak (Quercus robur L.) and beech (Fagus sylvatica L.)
dominate with 32% of the total forest area. About 32% of forests are young stands, 44% middle-
aged, 13% immature, and 11% mature or overmature. On the average, the forests have a high
productivity, e.g., the average growing stock over the country is 200 m3 ha−1(Ukrstateforestproject
2012). More than 50% of the forested area are planted forests.

Ukrainian forests (in addition to those in the mountainous regions) are substantially
fragmented with an average area of the primary inventory unit (i.e., the individual forest stand
or other categories of forest land) of 2–3 ha, which requires the use of very high-resolution
remotely sensed data for detection.

2.2 Methodology workflow

We have used a range of different products derived from remote sensing to estimate the
spatially explicit forest carbon budget using the steps outlined in Fig. 1: (1) a forest mask was
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developed for the year 2010, (2) the spatial distribution of the forest parameters was derived
based on available information, and (3) the major components of the carbon budget of the
forest ecosystems were estimated, including the uncertainty. Each of these steps is described in
more detail below.

2.3 Developing the forest mask

To reduce the uncertainties in the calculation of the forest carbon budget, we have developed a
new country-wide forest map at a resolution of 60 m by fusing available data derived from
remote sensing with reference data (Hansen et al. 2013; Chen et al. 2014; Shimada et al.
2014a). These individual maps suffer from significant thematic errors, e.g., on Hansen’s tree
cover map, all the wetlands have been classified as high-percentage forests; on the JAXA
(Japan Aerospace Exploration Agency) PALSAR forest mask, some villages or small towns
are classified as trees; on the 30 m GlobeLand land cover product, small patches of forest are
very often aggregated to a dominant class in a neighboring area, e.g., to agriculture. To create
an improved land cover map, we used a spatial analytical method called geographically
weighted regression to integrate existing maps with Geo-Wiki reference data to develop a
more accurate product. Here, we define reference data to be either in-situ data or data collected
by visual interpretation of very high-resolution satellite imagery. The hybrid forest map is then
used for the assessment of the carbon budget of the forest ecosystems in Ukraine including
uncertainty. The methodology for the creation of the hybrid map and the assessment of the
forest carbon budget are described in the sections that follow.

2.3.1 Input layers

A number of new land cover products derived from remote sensing have recently emerged.
The overall trend has been towards a higher spatial resolution such as the 30-m resolution

Fig. 1 Scheme for the development of a spatially explicit forest carbon budget
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maps of percentage tree cover, as well as tree cover gain and loss by Hansen et al. (2013), and
the 30 m GlobeLand land cover product (Chen et al. 2014). These maps were developed from
Landsat high-resolution satellite imagery, which has recently become freely available (Wulder
et al. 2012). Another product that has become available is forest mask that has been produced
by the Japan Aerospace Exploration Agency (JAXA) at a resolution of 25 m (Shimada et al.
2014). Other coarser resolution data sets are also available, e.g., Globcover 2009 with a
resolution of 300 m (Bontemps et al. 2011), the MODIS Vegetation Continuous Fields product
at 250 m (DiMiceli et al. 2011), etc. Disaggregation of the medium resolution products to a
finer resolution increases the uncertainty of estimating the spatial distribution of forests.
Therefore, Hansen’s tree cover, GlobeLand30, and the JAXA forest mask were chosen for
the development of a hybrid forest map at a resolution of 60 m for the year 2010. These
products are described briefly below.

The Landsat-based tree cover product is a global forest cover change product for the
years 2000–2012 with a spatial resolution of 30 m (Hansen et al. 2013). The product has
three components: forest cover 2000, forest gain 2000–2012, and annual forest loss. We
created a forest map for 2010 by combining the data from these three products. Starting
with the forest map for 2000 as the base year, we adjusted the map by adding forest gains
and subtracting forest losses for the time period 2000–2010 to produce a forest map for
2010.

The 30 m GlobeLand30 product for 2000 and 2010 has been developed by the National
Geomatics Center of China (Chen et al. 2014). It is based on Landsat imagery in combination
with additional information on land resources and imagery from the HJ-1 satellite. The product
is freely available and comprises ten land cover classes including forest. We extracted a forest
mask for Ukraine from the GlobeLand30 product for the year 2010.

JAXA has produced a 25-m forest mask based on imagery from the Phased Array type L-
band Synthetic Aperture Radar (PALSAR) aboard the Advanced Land Observing Satellite
BDAICHI^ (ALOS) (Shimada et al. 2014).

We have only used forest cover information derived from these three maps. We aggregated
these maps to a resolution of 60 m to minimize the spatial errors when comparing the different
products, resulting in a percentage forest cover map for each product.

2.3.2 Reference data from Geo-Wiki

Reference data on forest cover were collected using the Geo-Wiki application (Fritz et al.
2012), which aims to validate, correct, and enhance land cover products. Five forestry and
remote sensing experts collected the data by visually estimating the percentage of forest cover
visible in a 60-m pixel overlaid onto very high resolution Google Earth imagery. To aid the
interpreters, each 60-m pixel was further subdivided into nine cells. Here we have defined
forest as an area with a minimum tree canopy cover of 25% and a minimum area of 0.5 ha,
which corresponds to the official definition of forest in Ukraine (Ukrstateforestproject 2012).
This corresponds to slightly more than two cells within each 60-m pixel and a total tree canopy
cover of more than 25%.

Figure 2 illustrates how the forest data were collected through a customized application
within Geo-Wiki. The training data samples were randomly generated in areas of forest and
non-forest using a random stratified design, where the strata were based on the Hansen tree
cover map. The final training data set contains approximately 12K pixels of land cover
information (presence/absence of forest) for Ukraine.
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The validation data have also been collected through Geo-Wiki and the data set includes
approximately 4K pixels. The sample has been generated by following the validation guide-
lines of Olofsson et al. (2014). The sample design is random stratified, where the strata are
based on the resultant forest presence/absence map.

2.3.3 Geographically weighted regression

We have chosen geographically weighted regression (GWR) as the method to fuse the three
abovementioned land cover products with the training data collected using Geo-Wiki to create
a hybrid forest cover map. Lesiv et al. (2016) have shown that GWR performs better than other
data fusion methods because GWR estimates the model parameters at each geographical
location using a kernel. In addition, the observations are weighted by distance, so those closer
to the location of interest will have more influence on the parameter estimates.

The probability of forest presence was then estimated using logistic GWR where the
probabilities of correspondence between the Geo-Wiki training data and the input layers were
calculated as follows:

logit P yi ¼ 1ð Þð Þ ¼ b0 ui;við Þ þ b1 ui;við Þx1 i; jð Þ þ b2 ui;við Þx1 i; jð Þ þ…þ bn ui;við Þxn i; jð Þ; ð1Þ
where P(yi = 1) is the probability of forest at each location i; log it is a logistic regression; (ui,
vi) is the two-dimensional vector of location i; b0 ui;við Þ is the intercept; bj; j ¼ 1; n are

coefficients of the logistic regression model; x j; j ¼ 1; n indicates the percentage of forest
cover in a pixel by global land cover product j, and n is the number of input data sets.

Maps of forest probabilities were converted to forest presence/absence maps by applying a
threshold of 50%, following the example of the usage of logistic regression models in Pampel
(2000). The hybrid forest map was developed in the R environment, which is a free statistical
software with various geographical libraries. The hybrid forest map was then assessed using an

Fig. 2 A customized Geo-Wiki application for collecting forest cover reference data
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independent validation data set for Ukraine collected using Geo-Wiki as outlined previously in
section 2.3.2.

2.4 Spatially explicit forest parameters

Forest ecosystem parameters include actual forest characteristics that are being recorded and
permanently updated by the forest inventory in Ukraine. These parameters include, among
others, the tree species, their age, the relative stocking, the site index, the growing stock
volume, and the area in ha. These individual stand data are collected by forest enterprises,
which are administrative forest units managed by the state. We have used official data for the
year 2011, which is the latest available forest database.

The forest ecosystem parameter database has been downscaled to the level of the forest map
developed here. For downscaling, we applied the method presented in Schepaschenko et al.
(2011). We calculated a suitability index for each pixel pair (i.e., between the forest pixel and
the forest inventory database record) within the territory unit (or forest enterprise). A forest
pixel is a pixel of the forest map that is covered by forest. We used the following formula:

Sts ¼ 1

q
∑
q

j¼1
xnormtj −xnormsj

� �2 !1
2

ð2Þ

xnormj ¼ x j−x j;min

x j;max−x j;min
ð3Þ

where Sts is the suitability index; t is the forest pixel; s is the record from the forest database; q
is the number of parameters; and xj, max, xj, min are the maximum and minimum values of
parameter j within a certain area (i.e., the forest enterprise).

To calculate the suitability indices, we used diverse sources of information as parameters,
including estimates from leading experts in forestry, who have experience of Ukrainian forests,
to derive the decision rules regarding the following:

• The ecological pattern of tree species distributions in mountainous regions based on their
preferred elevation and aspect

• The site index associations with slope and altitude
• The distribution of tree species depending on soil type
As explanatory layers, we used the following remote sensing products:
• The Hansen percentage tree cover map for 2010 (Hansen et al. 2013), created from the

available layers as described previously, to link tree cover to the relative stocking from the
forest inventory records

• A soil map of Ukraine (Krupsky and Polupan 1979), to link soil types to tree species from
the database, as certain tree species prefer a certain soil type

• A biomass map (Gallaun et al. 2010) to calculate the growing stock volume
• A digital elevation model from SRTM (Shuttle Radar Topography Mission) (Werner

2001) since the distribution of tree species in mountains is very well correlated with elevation
The resultant suitability index varies from 0 to 1. It can be interpreted as the distance

between objects (i.e., the forest pixel and the database record) within the space of parameters.
The lower the value of the index, the more suitable is the current piece of territory. Each forest
record in the database was assigned to the most suitable pixel within each forest enterprise.
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2.5 Estimating the parameters of the forest carbon budget

For assessment of the carbon budget of Ukrainian forests, a methodology for a full and verified
carbon budget was used, which was developed by the International Institute for Applied
Systems Analysis (Shvidenko et al. 2015). The methodology is based on a system combination
of flux-based and stock-based methods. The stock-based method estimates the change in the
carbon stock of carbon pools as

ΔC ¼ ΔLBþΔWDþΔS ð4Þ
where ΔLB, ΔWD and ΔS are changes in the carbon stocks of live biomass, woody detritus,
and soil, respectively, while the flux-based method has the following form:

NBP ¼ NPP−HSR−DEC−HARV−DIST−LAT ð5Þ

where NBP is net biome production; NPP is net primary production; HSR is heterotrophic soil
respiration; DEC is the flux due to decomposition of dead wood that remains in the forest;
HARVare the fluxes due to harvest and international trade of wood products; DIST is the flux
caused by disturbances, and LAT are lateral fluxes to the hydrosphere and lithosphere. Both of
these methods have strengths and weaknesses (e.g., Shvidenko et al., 2010, 2015). For
example, the dynamics and variability of soil carbon content do not allow for the reliable
monitoring of soil carbon changes in the stock-based method, while the NPP flux can be
estimated much more accurately using the biomass change approach. This is why we have
used both methods together in a complimentary way.

Live biomass (LB) was defined using a multi-dimensional regression of biomass expansion
factors (Rfr) by species, geographical regions (where relevant), and LB components
(Shvidenko et al. 2007) as follows:

R fr ¼ M fr=GS ¼ a0 � Aa1 � SIa2 � RSa3 � EXP a4 � Aþ a5 � RSð Þ ð6Þ
where Rfr is the ratio of the mass of individual components of LB (stem wood over bark; crown
wood; foliage; roots) to growing stock volume; Mfr is the mass of individual components of
LB, dry matter or carbon units, t ha−1; GS is the growing stock volume, m3 ha−1; A is the
average age of stands in years; SI is the site index; RS is the relative stocking, and a1, a2, … a5
are the regression coefficients. The mass of LB is then defined as LBfr = Rfr × GS and
LBtot =Σ × LBfr, where LBtot is the total LB of an individual forest ecosystem. Equation (6)
is based on extensive field experiments (using destructive sampling) collected in a database
that includes more than 11,000 sample plots for temperate and boreal forests (Schepaschenko
et al. 2017b). When Eq. (6) is applied to multiple species, there is no systematic error.
Moreover, such an approach can estimate LB within a 15% error band (CI 0.9) for an
individual forest stand if the GS is defined within the officially required maximum error of
12% (Shvidenko et al. 2014). The yearly change in the LB stock (i.e., current increment by
LB) was defined as the difference between the LB of two consecutive years.

The last two components of Eq. (4) cannot be measured by remote sensing directly. The
change in the woody detritus stock was recalculated based on forest area change, forest
inventory data, and a database of direct in situ measurements; this stock included dry standing
trees (snags), dry branches of living trees, logs, and stumps. These data were calculated for
2000–2010. Taking into account the substantial uncertainty in the input data, the calculation
was done at the level of administrative regions. Satisfactory data on the dynamics of soil
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carbon in Ukrainian forests are absent. We used the average data published for European
forests (Kramer and Mohren 2001; Mund and Schulze 2006; Kutsch et al. 2010) for corre-
sponding tree species in similar climate conditions to Ukraine, which were in line with the
limited data available for Ukraine (Pasternak 2011).

NPP was defined by a semi-empirical method described in Shvidenko et al. (2007). It is
calculated based on regionally distributed models of biological productivity, which combine
models of growth and LB dynamics. Within this method, NPP is considered to be the
difference in total productivity of LB for two consecutive years, taking into account the
turnover of fine roots and foliage, damage by wind, insects, harvest, etc. This method does
not have any recognized biases compared to a direct aggregation of results from field
measurements, which do not account for some important components of carbon turnover
(e.g., root exudates, volatile organic compounds). The uncertainty in the NPP was defined in
an independent way, i.e., through a correlation between the current increment of LB and NPP.

Heterotrophic soil respiration (HSR) was calculated using the approach presented in
Mukhortova et al. (2015) by groups of soil types i and dominant tree species j as

HSR i; jð Þ ¼ TSR ið Þ⋯PHSR i; jð Þ⋯A i; jð Þ: ð7Þ
where TSR is total soil respiration; PHSR is the percentage of HSR in TSR, and A is the area
of the dominant species.

DEC was assessed based on zonal coefficients of decomposition that were averaged based
on measurements in Ukrainian forests and regions of similar climatic conditions and forest
types of the Eurasian temperate zone. The amount of harvested wood, as well as data on
natural disturbances, were taken from the official statistics of the State Agency of Forest
Management of Ukraine. Natural disturbances included fire, impacts of insects and diseases,
and the impact of unfavorable weather conditions. Carbon fluxes caused by forest fire were
assessed by an approach presented in Shvidenko et al. (2014). The assessment of the impacts
of biogenic factors and unfavorable weather conditions on productivity and the health status of
forests was based on an estimation of the forest-pathological state of Ukrainian forests by
administrative region for previous years and forecast to 2020 (Ustsky et al. 2010; Ustsky
2011). The forest-pathological state was quantified using the percentage of mortality for six
levels of severity due to forest-pathological processes.

Spatially-explicit regional estimates of the removal of carbon in the hydro- and lithosphere
in Ukraine are absent. We used published data for the temperate forests of the Northern
hemisphere, which provide average values in the range of 1.5–2% of NPP (e.g., Dolman et al.
2012).

The stock- and flux-based methods were used to produce independent estimates of the
carbon cycle of Ukraine’s forests. The uncertainties in these methods were calculated based on
the application of error propagation theory: for a function y = f (x1, x2, ..., xk), where xi (i = 1, ...,
k) are stochastic variables with standard errors mi, the standard error of y is defined as

m2
y ¼ ∑k

i¼1

dy
dxi

� �2

þ 2∑i> j
dy
dxi

� �
dy
dxi

� �
rijmximx j ; ð8Þ

where rij is the correlation coefficient between xi and xj, and dy/dxi are the partial derivatives of
y by xi.

When rij < 0.2–0.3, which is typical for the majority of the estimated parameters, the use of
only the first component of the right part of Eq. (8) does not change the level of the final
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uncertainty substantially; thus, in appropriate cases, we used Eq. (8) in a simplified form, i.e.,
assuming statistical independence of the input variables.

A specific feature of the carbon accounting and estimation of uncertainties that are
presented in this paper is the use of a forest inventory database for forests in Ukraine. This
database contains biometric characteristics of ca 3.6 × 106 individual stands, i.e., primary
inventory units, from about 2 × 103 for larch to over 106 for oak stands. This has had an impact
on the specifics and size of the uncertainties because it has practically eliminated the sampling
error in some cases. We have provided calculations of these parameters for forests with the ten
major dominant species, which cover about 95% of the forest area in Ukraine. In the
calculations, the relevant data about the rest of the tree species that cover the remaining area
were added to the species with similar bioecological properties.

3 Results

3.1 A hybrid forest map and forest parameters for Ukraine

The first output in this study is the hybrid forest map for the year 2010 for Ukraine and the
forest ecosystem parameters. These are required as inputs for the calculation of the spatially
explicit carbon budget. The hybrid map represents the first forest map for this country at a 60-
m resolution. The overall accuracy of the map is 91.6 ± 0.8% (CI 95%). Table 1 presents a
summary of the accuracy estimates of the new forest mask and the input maps used in its
development. The differences in the accuracy estimates between each possible pair of maps are
statistically significant (p values < 0.01) (Foody 2004).

Bilous et al. (2017) estimated the accuracy of several forest maps for 45 km2 of the Snovsk
test area in the Ukrainian Polissya region. They have shown that our hybrid map performs the
best (user’s accuracy 92%, producer’s accuracy 81%) compared to other global data sets
presented in this study.

The total area of forest was calculated to be 8.7 ± 0.2 M ha (CI 95%) while the official
statistics report 9.6 M ha of forested area in Ukraine (Ukrstateforestproject 2012). There are
different potential reasons for this inconsistency. Electronic maps and databases are only
available for 8.5 M ha in Ukraine. The rest is represented by forests that are not managed
(7.5%) and another 6% that belong to more than 30 different Bnon-forest^ stakeholders (such
as the Ministry of Defense and different administrative bodies) with a low or practically absent
forest management. The last inventories of these forests were dated around the 1990s, and their
real state may be substantially different from the inventory records. In addition, official
Ukrainian statistics do not take forested areas on abandoned agricultural land of ca 3 M ha
into account, which are largely in the forest steppe and steppe regions. The process of the
impoverishment of forests in the southern forest steppe and steppe, particularly of protective

Table 1 Overall accuracy estimates of the final hybrid forest map and the input forest maps

Maps Overall accuracy % P values

Hybrid forest map 91.6 < 0.01
GlobeLand 30 m 88.0 < 0.01
Hansen’s forest map 86.7 < 0.01
JAXA’s PALSAR forest map 84.7 < 0.01
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forests and shelterbelts on agricultural land, has been repeatedly reported (Fourdichko et al.
2006). The new map reports forested areas for the southern administrative regions (oblasts)
that are substantially less than the corresponding forest inventory data, i.e., up to 30% less,
while the regions with forest zones (i.e., Polissya and Carpathians) have similar areas on the
map when compared with the forest statistics; sometimes more areas are recorded than in the
forest inventory. Indeed, the remote sensing products used in the production of the input forest
maps may not recognize narrow shelterbelts in the south, young forests, substantially degraded
forests, and afforestation of abandoned agricultural land. Issues associated with mapping of
dryland forests are also discussed in Schepaschenko et al. (2017a). Therefore, the mapped
forest area is smaller than the forest area estimate. However, the area of such forests is small,
i.e., several percent by region. In addition, the new forest map might consider other tree
covered areas (e.g., gardens, parks in settlements, etc.) as forests if their canopy cover exceeds
the minimum threshold.

From the forest map, we have developed the following spatially explicit forest ecosystem
parameter maps: the spatial distribution of tree species, the spatial distribution of total biomass,
and the spatial distribution of NPP. The spatially explicit map of dominant tree species (Fig. 3)
is the first tree species map at such a fine resolution and with such a detailed nomenclature,
fully covering Ukraine. It shows a good spatial distribution of tree species in the mountainous
regions of Ukraine, in particular, for beech and spruce trees. However, the spatial distribution
of tree species on flat areas has some noise. This map (Fig. 3) also captures dominant tree
species by forest enterprises very well.

The accuracy of our tree species map for the Snovsk test area (Bilous et al. 2017) was
estimated as 71%, while the overall accuracy of the European tree species data set (Brus
et al. 2012) was only 36% for the same area. Our growing stock volume estimation was
again the most reliable when compared to any other global or regional data sets (Bilous et al.
2017).

Figure 4 highlights the forest areas with the highest biomass values such as the Carpathians,
and with the lowest biomass, i.e., the Volyn region in Ukraine in the northern and southern
regions.

Figure 5 shows the spatial variation of NPP of Ukrainian forests. The patterns are very
similar to the spatially explicit forest biomass map (Fig. 4).

3.2 The forest carbon budget and its uncertainties

Using the hybrid forest map and the methodology outlined in Section 2.3, the results of the
assessment of the LB of Ukraine’s forests, as a crucial component of the stock-based method,
is presented in Table 1. LB is aggregated by dominant species and for the country as a whole.
The LB stock is assessed at 707.7 Tg C, or 81.2 t C ha−1. Trees comprise 95% of carbon of the
total LB; 82% are in above-ground LB; 68% are in stem wood, and 17% are in roots. Only 5%
of the carbon in forest ecosystems are in the understory and the green forest floor. Overall,
such proportions are typical for temperate forests of high productivity.

The calculated uncertainty in total LB includes errors in the regressions of the biomass
expansion factors, the growing stock volume, and the area (Table 2). If LB is expressed in units
of dry matter, the final error is estimated at ± 3.3%. If the error from the recalculation of the LB
in carbon units is added, where we used an additional error of ± 1.5% in this estimation, then
the final error is ± 3.6%. Here and below these estimates are to one standard error unless
otherwise stated. Because the LB was calculated for each forest stand in the database, the
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impact of the uncertainties of the biomass expansion factor regressions on the uncertainties of
the average values of LB by tree species was very small.

The total volume of woody detritus is estimated at 141.3Mm3 (including 56% in dead trees
and snags and 44% in logs). Using an average specific gravity of 0.35 for snags and

Fig. 3 The spatial distribution of dominant tree species for 2010

Fig. 4 Biomass map for 2010, t C ha−1
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0.25 Mg d.m. m−3 for logs plus an assumption of 50% carbon content in the dry matter, then
the carbon stock in woody detritus can be estimated at 21.7 Tg C, or 3.1% of the total stock of
carbon in LB. Reliable estimates of woody detritus dynamics are possible only based on a long
period of observation. Assuming that the share of woody detritus to the total LB does not
change over a short period (i.e., 2 to 3 years), the stock change in the woody detritus will
increase to 1.56 Tg C year−1 (which is 3.1% of the LB annual increment; see Table 3).
Assuming that the standard error of this change is 20%, we obtain a sink in dead aboveground
wood of 1.56 ± 0.32 Tg C year−1.

Despite a number of publications on the impacts of forests on soil carbon under afforesta-
tion in Ukraine, there are no systematic inventories of the dynamics of soil carbon in forests
that have not undergone large scale disturbances. The official reporting of Ukraine to the

Fig. 5 Net primary production (NPP) of Ukrainian forests for 2010, g C m−2 year−1

Table 2 Total LB of Ukrainian forest by dominant species

Species Area, 103 ha GS, 106 m3 Rtot mRtot LB, Tg C mLB, Tg C

Pine 3049.0 721.7 0.6268 0.0215 226.2 8.54
Spruce 662.0 209.4 0.6570 0.0204 68.6 2.35
Fir 133.5 35.8 0.6081 0.0204 10.9 0.41
Larch 9.4 2.1 0.7033 0.0235 0.7 0.03
Oak 2515.3 422.4 0.9623 0.0307 203.2 7.13
Beech 759.1 232.6 0.9699 0.0317 112.8 4.06
Acacia 203.5 13.9 1.2757 0.0389 8.8 0.30
Birch 690.1 97.0 0.8097 0.0264 39.3 1.41
Aspen 158.8 25.1 0.7620 0.0234 9.6 0.33
Alder 531.7 82.9 0.6602 0.0224 27.4 1.03
Total 8712.5 1842.9 707.7 25.62

GS, growing stock volume; Rtot, biomass expansion factor for the total ecosystems LB (Rtot =Rstem + Rbranches +
Rfoliage + Rroots + Runderstory + Rgff); LB, live biomass; m, standard error
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Secretariat of the UNFCCC uses an assumption that soil carbon stock does not change in those
forests that remain forests for the period of the assessment (www.seia.gov.
ua/seia/doccatalog/document?id=138881). However, in-situ measurements do not corroborate
this. The modeling calculations for European forests show that approximately 70% of carbon
inputs are accumulated in LB and woody detritus and 30% in soil including litter (Liski et al.
2002; Nabuurs et al. 2003). Other studies estimate the accumulation of carbon in the soil of
forest ecosystems to be in the range of 10–50 g C m−2 year−1 (Mund and Schulze 2006; Kutsch
et al. 2010). According to Kramer and Mohren (2001), while the net annual accumulation of
carbon in the soil of European forests is 0.05 kg C m−2 year−1. The first approach yields 2.3
Tg C year−1, while the second produces estimates that range from 0.9 to 4.4, or on average 2.6
Tg C year−1. Taking into account the specifics of Ukrainian forests (i.e., harvested and fire
areas, use of woody detritus for fuel, and area of planted forests), we have used a conservative
estimate of 75% of the average of the above two approaches (1.88 Tg C year−1). Assuming an
error of 50%, we would obtain an annual input to the woody detritus pool of 1.88 ± 0.94
Tg C year−1. Following Eqs. (1) and (4), the net ecosystem carbon budget (NECB) of
Ukrainian forests is estimated by the stock-based method to be 11.1 ± 1.4 Tg C year−1, which
is an error of 12.6%.

With respect to the flux-based method, we estimated two major fluxes: NPP (Table 3) and
HSR (Table 4). Similarly to LB, NPP was defined for each individual stand. The total NPP was
determined to be 44.0 Tg C year−1, i.e., the average for Ukraine is 504 ± 28 g C m−2 year−1

(with an error of ± 5.6%). The spatial variability of NPP is high (Fig. 5). The uncertainty in
NPP was estimated in an independent way, based on regressions between the average
increment of LB and NPP by dominant tree species. The current increment of total LB was
calculated as the difference in the total stock of LB by individual stands with an aggregation by
dominant species for two consecutive years and was estimated to be 7.69 Tg C year−1. The
regressions were calculated separately for coniferous species as follows:

y ¼ 1931⋅xþ 2488;R2 ¼ 0:92;RMSE ¼ 15 ð9Þ

Table 4 Assessment of heterotrophic soil respiration and its uncertainty

Soil groups Area marea TSR mTSR HSR mHSR HSR
average

mHSR HSR

103 ha g C m−2 year−1 % g C m−2 year−1 Tg C year−1

Luvisols and Greyzems 2421.3 99.3 569 18.6 48.7 1.2 277 16.0 6.71
Gleysols 974.9 40.0 619 47.9 49.1 1.8 304 28.9 2.96
Histosols 646.6 26.5 525 20.5 48.8 1.8 256 17.3 1.66
Cambisols and Metamorphic

soils
1361.8 55.8 645 26.7 49.9 1.2 322 20.3 4.38

Phaeozems, Histosols and
Leptosols

722.4 29.6 1103 65.4 48.2 1.8 532 43.2 3.84

Chernozems and
Kastanozems

2111.1 86.6 538 34.3 47.6 1.8 256 21.7 5.40

Fluvisols 206.4 8.5 1140 41.8 48.2 1.8 550 36.6 1.14
Calcisols and Solonetz 215.7 8.8 434 21 46.7 1.8 203 15.1 0.44
Leptosols 52.3 2.1 666 34.3 39.8 1.2 265 19.2 0.14
Total 8712.5 357.2 – – – – 306 23.7 26.67

HSR, heterotrophic soil respiration; TSR, total soil respiration;m, standard error for different variables in the table
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and for deciduous species as:

y ¼ 2920⋅xþ 2694;R2 ¼ 0:68;RMSE ¼ 55 ð10Þ
where x is the yearly increment by total LB by individual species (t C yearr−1), and y is the
average NPP by species. The uncertainty in the NPP was calculated by summing the variance
of the increment using Eq. (8) and the regression Eqs. (9–10). The variance of the residuals

was estimated as s2res ¼ s2tot 1−R
2

� �
.

The means and standard errors of soil respiration (SR) were calculated based on a database
of SR measurements. The estimate was calculated as 26.7 Tg C year−1, or 306 g C m−2 year−1.
According to Eqs. (5) and (7), the uncertainty was calculated using the variance of TSR, the
share of HSR in the total soil efflux, and the area covered by the dominant species. Finally, the
uncertainty of SHR was estimated to be 7.7%, i.e., 306 ± 24 g C m−2 year−1, or 26.7 ±
2.1 Tg C year−1. SHR comprises ~ 60% of NPP, and the ratio between NBP and NPP is
0.21. The rather high uncertainties in HSR follow from the lack of knowledge about soil
processes in Ukrainian forests and the absence of systematic and detailed information on soils.
The database on SR only contained a few measurements made in Ukrainian forests; the scale
of the available soil map was coarse (i.e., 1:2.5 M), and the relevant soil horizon indicators
were weakly quantified.

The results of the total carbon budget for forest ecosystems in Ukraine estimated by the
flux-based method and using the hybrid forest map is presented in Table 5.

The fluxes in Tables 3 to 5 that have not been derived from remote sensing have been
adapted from a previous assessment (Shvidenko et al., 2014) and recalculated with respect to
the areas of the hybrid map.

The uncertainty in these relatively small fluxes are as follows: DEC ± 20%, HARV ± 15%,
DIST ± 33%, and LAT ± 57% (where all values are rounded to integer numbers). Together this
results in a final uncertainty in the yearly value of NBP defined by the flux-based method as
11.8 ± 3.2 Tg C year−1, i.e., the relative error is ca 28%, which to a substantial extent is
explained by the high annual variability in the two major fluxes (NPP and HSR) and
insufficient soil information in particular. Much more accurate results from the flux-based
method will be produced if longer time periods are used, e.g., 12–15% for a 5-year period,
assuming that the assessment does not have uncontrolled biases.

Table 5 Carbon budget of Ukrainian forests based on the flux-based method

Bioclimatic region Area,K ha Carbon fluxes, g C m−2 year−1, the totals in Tg C year−1

NPP HSR DEC HARV DIST LAT NBP

Polissya 3554.4 453 327 11 34 21 5 55
Forest steppe 2562.1 531 283 7 23 17 8 193
Steppe 608.9 487 263 3 3 26 5 187
Carpathians 1727.3 589 325 14 32 9 12 197
Crimea 259.9 442 273 6 2 12 6 143
Total 8712.5 44.0 26.7 0.9 2.4 1.5 0.6 11.8
Average, g C m−2 year−1 – 504 306 10 27 18 7 135
Uncertainty, g C m−2 year−1 – ± 28 ±24 ±2 ±4 ±6 ±4 ±38

NPP, net primary production;HSR heterotrophic soil respiration;DEC, the flux due to decomposition due to dead
wood that remains in the forest; HARV, the flux due to harvest and international trade; DIST, the flux caused by
disturbances; LAT, lateral fluxes to the hydrosphere and lithosphere; NBP, net biome production
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Overall, the two approaches lead to the conclusion that Ukrainian forests serve as a net
carbon sink in the range from 11.0 ± 1.4 (stock-based method) to 11.8 ± 3.2 Tg C year−1

(flux-based method), or on average 11.4 ± 1.7 Tg C year−1 (or 131 ± 20 g C m−2 year−1).
The sink differs by bioclimatic zone, i.e., from 55 g C m−2 year−1 in Polissya to
197 g C m−2 year−1 in the Carpathians. This diversity is explained by climatic and forest
type drivers as well as by the intensity of the harvest and the extent and severity of natural
disturbances.

4 Discussion

One of the key results from this study is the fact that the current forest inventory system in
Ukraine does not correctly reflect areas of national forest, which impacts the reliability of the
estimates of almost all forest ecosystem services including carbon sequestration. This is a
rather unexpected result because the existing system is based on the principles of continuous
forest inventory and should provide the annual estimation of all forest parameters. The
difference between official forest inventory data (9573.9 × 103 ha) and the hybrid forest map
(8712.5 ± 226.2 × 103 ha) is large (~ 9%), and the spatial distribution shows an important
feature, i.e., while regions of the forest zone and mountains have forest areas that are close to
the inventory data, the areas in the regions of the southern forest steppe and steppe differ by up
to 30% or more. This cannot be explained by the uncertainty from the remote sensing
assessment. The resolution of the hybrid forest map is sufficiently fine such that substantial
biases are avoided. The study also shows that the integration of relevant remote sensing
products through advanced spatial analytical methods such as geographically weighted regres-
sion in combination with reference data collected through Geo-Wiki allows us to provide a
forest cover map for a specific date with a satisfactory level of accuracy. The independent use
of the flux- and stock-based methods of carbon accounting resulted in a rather low level of
uncertainty, i.e., ± 3.6%. This high level of accuracy has positive implications for acceptability
by policy makers (Shvidenko et al. 2010).

There have been very few results published in the past for the entire country. These are
limited to the official reporting of Ukraine to the Secretariat of the IPCC. The 6th National
communication of Ukraine (http://unfccc.int/national_reports/items/1408.php) reported a net
carbon sink of 161.6 g C m−2 year−1 for the last few decades, which is about one fifth higher
than the estimate found in this study (135 ± 38 g C m−2 year−1). The National Communications
are based on data from the National Cadastre of anthropogenic emissions and removals, which
is updated periodically (www.seia.gov.ua/seia/doccatalog/document?id=138881); for 2010, the
net carbon sink was estimated at 146 g C m−2 year−1. These results were based on the IPCC
methodology, the official forest inventory data, and the assumption that the amount of carbon
in the soil of forested areas has not changed over time. In a model-based approach for
European countries, Schulze et al. (2010) estimated the average sink for Ukrainian forests to
be 138 g C m−2 year−1, which is ~ 5.4% higher than the estimate produced in this study. Using
the flux-based method, Shvidenko et al. (2014) estimated the sink to be 115 ± 29
g C m−2 year−1 (or 12% lower than the result found in this study) using forest inventory data
aggregated by administrative units. This study also reported the result of applying the stock-
based method where the dynamics of LB and dead wood were assessed directly, and changes
in soil carbon were based on the aggregation of available empirical data. The estimate was 108
g C m−2 year−1, or about 17% lower than the carbon sink estimated by the stock-based method
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in this study. Overall, the reported results of the carbon sink per unit area vary, but in a
relatively limited range.

The carbon sink was recently assessed using a system-based approach for forests in 25
countries of the EU, resulting in 75 ± 25 g C m−2 year−1 and an NBP to NPP ratio of 0.15
(Luyssaert et al. 2010). This is substantially less than our estimates for Ukraine
(131 g C m−2 year−1 and 0.21, respectively). However, it is necessary to note that Ukraine
has about 50% of protected forests with a very limited regime of wood harvesting. In addition,
we used official data for the assessment of the amount of harvested wood. These data are
biased because they do not take into account illegal harvesting in Ukraine, which is substantial,
i.e., up to 1.0–1.2 M m3 year−1 (Kiiko 2009; Kuemmerle et al. 2009). Note that in order to
exclude the impact of differences in the forest area, we compared the average values of the
carbon sink. The differences between the estimates of the total carbon sink for the entire
country are clearly higher and could reach up to 20–25% due to the differences in forest area.
Hence, the above comparisons include some inconsistencies because different studies have
used different methods and different information and were sometimes related to different time
periods.

Only one of the above cited studies for Ukraine attempted to assess the uncertainty in the
intermediate and final results, which were lower than those reported in this study (Shvidenko
et al. 2014). However, this study assumed that the forest inventory presents accurate data about
the area of forests in Ukraine. As we have shown here, this does not correspond to reality. The
2010 forest map produced here clearly indicates a lower forest area in Ukraine, particularly in
critical growing conditions. This process can relate to both ongoing climate change and
decreases in forest governance due to the complicated political situation in the country and
military operations in the southeast. Thus, more research is required for providing more
accurate estimates of this critical process of change.

Note that the uncertainties in the carbon budget assessment of this study should be used
with some caveats. First, the calculation schemes of uncertainty assume that all initial data,
empirical aggregations, and semi-empirical models that are used do not have statistically
significant biases. To a significant extent, this seems true with respect to the models and the
calculation schemes used, the adequacy of which has been controlled by statistical analysis.
However, such a statement with respect to the initial data from the forest inventory may be an
oversimplification in several important cases, e.g., connected to unknown uncertainties of
forest inventory data. Secondly, all considerations of uncertainties are based on normal
distributions. An analysis of the major inputs and the calculated intermediate and final results
shows that the majority of distributions are similar to a normal (mostly Gram-Charlier)
distribution. Hence, this assumption will not have a significant impact on the conclusions.
Thirdly, different methods define different indicators, e.g., the flux-based method produces
NBP, while the stock-based approach produces the NECB. Fourth, some of the calculations are
based on the forest inventory, which is missing around 9% of Ukrainian forests. Covering this
gap through analogs will introduce some unknown errors, but these should be relatively small.
Finally, all the calculations include the limited use of expert estimates for practical reasons,
which introduces some subjectivity into the analysis.

It is important to understand that a full carbon account of forest ecosystems is an ill-defined
and hence fuzzy problem whose membership functions are inherently stochastic. This means
that the uncertainty arising from any individual method of studying the carbon cycle is
inevitably incomplete because it does not contain structural uncertainty, which could be
significant. Any judgment about either total uncertainty or the Buncertainty of uncertainties^
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requires additional information that can only be provided by independent results obtained from
other methods (Shvidenko et al. 2010, 2015). Carbon accounting by other methods (such as
landscape and global vegetation models, eddy covariance, and direct assessment of carbon
cycle parameters by remote sensing) has either not been undertaken in Ukraine, or the spatial
resolution of the global products has been too coarse for the reliable assessment of uncer-
tainties in the past. However, the above results from recent inventory studies do present some
indirect evidence for judging the full uncertainties of the account.

This study has policy and forest management applications. It demonstrates that even in
countries with a rather well-organized forest inventory such as Ukraine, official statistics may
be partially obsolete and biased. As shown in recent studies, the national forest information
reported to FAO’s Forest Resource Assessment is very uncertain for many countries
(Schepaschenko et al. 2015), and novel methodologies, which are based on remote sensing
within an applied systems analysis approach, open up new ways for substantial improvements
in international reporting quality. At a national level, Ukraine requires the development of a
modern system of forest accounting, which would aggregate national and management forest
inventories, as well as forest monitoring, in a systems approach. State ownership of forests in
the country would promote the development of such a system. Moreover, the increasing role of
science in studying forest ecosystem services is urgently needed. For example, there are no
eddy covariance measurements in Ukrainian forests, and remote sensing data are not used in
the forest inventory in any systems approach.

The methods of carbon accounting used here are limited by an understanding of the
processes occurring within forest ecosystems. Hence future research should include two
important components in the account. One is the protective role of forests outside of forest
areas, particularly in agroforestry landscapes, their impacts on the productivity of agricultural
land, and the protection of soil and water. Second is a consideration of the impacts of
technological chains of forest products from forests to end users and the impacts of these on
emissions and removals of greenhouse gases.

Climate change generates substantial risks and challenges for Ukrainian forests. As has
been shown in previous research, the vulnerability of Ukrainian forests to climate change is
high even under moderate IPCC scenarios such as A1B (Shvidenko et al. 2017). According to
this study, the central and southern regions of the country will face untenable conditions for the
growth of forests by the end of this century with clearly negative consequences for the carbon
budget of forest ecosystems. This would require substantial national efforts and strategies for
the adaptation of forest ecosystems to climate change as well as mitigation efforts to tackle the
undesirable consequences (Vasilchenko et al. 1998; Buksha and Pasternak 2005; Nijnik 2005;
Shvidenko et al. 2017).

5 Conclusions

For countries that do not currently have land cover data with an accuracy of higher than 85%,
e.g., Eastern European countries such as Russia, Belarus, and Moldova, the hybrid mapping
methodology presented here provides an opportunity to develop forest maps that can be used
in different national, regional, and global applications, including spatial-temporal accounting
and verification of emissions and removals of greenhouse gases. This study shows that the
application of advanced systems analyses to difficult and ill-defined tasks can result in outputs
that are accurate enough to be used for policy implementation and forest management. The use

Mitig Adapt Strateg Glob Change



of spatially explicit products such as those developed here minimizes the impacts of one of the
most uncertain components of the carbon accounting of forest ecosystems, i.e., the lack of
operational knowledge about spatial-temporal changes in forests, which is not satisfactorily
reflected in the forest inventories of many countries.

However, with respect to further improvements in advanced methodologies for understand-
ing the carbon cycle of forest ecosystems, this study presents an initial step forward in the
development of a multi-sensor remote sensing approach. At the same time, this study
highlighted information gaps in different areas, e.g., in understanding biogeochemical pro-
cesses (particularly below ground) or in forest inventories. The study also underlined the need
for better system consistency across all types of information inputs. Only a comprehensive
integration of ground and remote sensing methods is able to satisfactorily cover the major
requirements of a full and verified carbon accounting system. Further improvements in
applications of remote sensing methods should deal with the estimation of the biophysical
indicators of forest ecosystems, which are not defined satisfactorily (or are not currently
defined at all) by current forest inventories. Among these, indicators of the vulnerability of
forest ecosystems and the stability of forest landscapes are those of principal importance for the
development of prospective national forest information systems in a world that is subject to
ongoing environmental change.
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