1,369 research outputs found

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    Yang--Mills sphalerons in all even spacetime dimensions d=2kd=2k, k>2k>2 : kk=3,4

    Full text link
    The classical solutions to higher dimensional Yang--Mills (YM) systems, which are integral parts of higher dimensional Einstein--YM (EYM) systems, are studied. These are the gravity decoupling limits of the fully gravitating EYM solutions. In odd spacetime dimensions, depending on the choice of gauge group, these are either topologically stable or unstable. Both cases are analysed, the latter numerically only. In even spacetime dimensions they are always unstable, describing saddle points of the energy, and can be described as {\it sphalerons}. This instability is analysed by constructing the noncontractible loops and calculating the Chern--Simons (CS) charges, and also perturbatively by numerically constructing the negative modes. This study is restricted to the simplest YM system in spacetime dimensions d=6,7,8d=6,7,8, which is amply illustrative of the generic case.Comment: 16 pages, 3 figures ; comments added, to appear in J. Phys.

    Nonsingular and accelerated expanding universe from effective Yang-Mills theory

    Full text link
    The energy-momentum tensor coming from one-parameter effective Yang- Mills theory is here used to describe the matter-energy content of the homogeneous and isotropic Friedmann cosmology in its early stages. The behavior of all solutions is examined. Particularly, it is shown that only solutions corresponding to an open model allow the universe to evolve into an accelerated expansion. This result appears as a possible mechanism for an inflationary phase produced by a vector field. Further, depending on the value of some parameters characterizing the system, the resulting models are classified as singular or nonsingular.Comment: 15 pages, 7 figures, some discussions were simplified and new remarks were introduce

    On the ground-state properties of antiferromagnetic half-integer spin chains with long-range interactions

    Full text link
    The Lieb-Shultz-Mattis theorem is extended to Heisenberg chains with long-range interactions. We prove that the half-integer spin chain has no gap, if it possesses unique ground state and the exchange decays faster than the inverse-square of distance between spins. The results can be extended to a wide class of one-dimensional models.Comment: 3 pages, RevTeX

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Language of Lullabies: The Russification and De-Russification of the Baltic States

    Get PDF
    This article argues that the laws for promotion of the national languages are a legitimate means for the Baltic states to establish their cultural independence from Russia and the former Soviet Union

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Quantum Physics and Human Language

    Get PDF
    Human languages employ constructions that tacitly assume specific properties of the limited range of phenomena they evolved to describe. These assumed properties are true features of that limited context, but may not be general or precise properties of all the physical situations allowed by fundamental physics. In brief, human languages contain `excess baggage' that must be qualified, discarded, or otherwise reformed to give a clear account in the context of fundamental physics of even the everyday phenomena that the languages evolved to describe. The surest route to clarity is to express the constructions of human languages in the language of fundamental physical theory, not the other way around. These ideas are illustrated by an analysis of the verb `to happen' and the word `reality' in special relativity and the modern quantum mechanics of closed systems.Comment: Contribution to the festschrift for G.C. Ghirardi on his 70th Birthday, minor correction
    corecore