5,632 research outputs found
Entanglement Equivalence of -qubit Symmetric States
We study the interconversion of multipartite symmetric -qubit states under
stochastic local operations and classical communication (SLOCC). We demonstrate
that if two symmetric states can be connected with a nonsymmetric invertible
local operation (ILO), then they belong necessarily to the separable, W, or GHZ
entanglement class, establishing a practical method of discriminating subsets
of entanglement classes. Furthermore, we prove that there always exists a
symmetric ILO connecting any pair of symmetric -qubit states equivalent
under SLOCC, simplifying the requirements for experimental implementations of
local interconversion of those states.Comment: Minor correction
The Measurement Calculus
Measurement-based quantum computation has emerged from the physics community
as a new approach to quantum computation where the notion of measurement is the
main driving force of computation. This is in contrast with the more
traditional circuit model which is based on unitary operations. Among
measurement-based quantum computation methods, the recently introduced one-way
quantum computer stands out as fundamental.
We develop a rigorous mathematical model underlying the one-way quantum
computer and present a concrete syntax and operational semantics for programs,
which we call patterns, and an algebra of these patterns derived from a
denotational semantics. More importantly, we present a calculus for reasoning
locally and compositionally about these patterns.
We present a rewrite theory and prove a general standardization theorem which
allows all patterns to be put in a semantically equivalent standard form.
Standardization has far-reaching consequences: a new physical architecture
based on performing all the entanglement in the beginning, parallelization by
exposing the dependency structure of measurements and expressiveness theorems.
Furthermore we formalize several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. This allows us to transfer all the theory
we develop for the one-way model to these models. This shows that the framework
we have developed has a general impact on measurement-based computation and is
not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new
version also include formalization of several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. To appear in Journal of AC
The Expectation Monad in Quantum Foundations
The expectation monad is introduced abstractly via two composable
adjunctions, but concretely captures measures. It turns out to sit in between
known monads: on the one hand the distribution and ultrafilter monad, and on
the other hand the continuation monad. This expectation monad is used in two
probabilistic analogues of fundamental results of Manes and Gelfand for the
ultrafilter monad: algebras of the expectation monad are convex compact
Hausdorff spaces, and are dually equivalent to so-called Banach effect
algebras. These structures capture states and effects in quantum foundations,
and also the duality between them. Moreover, the approach leads to a new
re-formulation of Gleason's theorem, expressing that effects on a Hilbert space
are free effect modules on projections, obtained via tensoring with the unit
interval.Comment: In Proceedings QPL 2011, arXiv:1210.029
Recommended from our members
Measurement of WZ and ZZ production in pp collisions at [Formula: see text] in final states with b-tagged jets.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations
Recommended from our members
Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at [Formula: see text].
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 5.0[Formula: see text] collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25[Formula: see text] respectively, in the pseudorapidity range [Formula: see text], [Formula: see text] and with an angular separation [Formula: see text], is [Formula: see text][Formula: see text]. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics
Recommended from our members
Measurement of masses in the [Formula: see text] system by kinematic endpoints in pp collisions at [Formula: see text].
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics
Measurement of jet multiplicity distributions in [Formula: see text] production in pp collisions at [Formula: see text].
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed
Bacterial diversity and community composition from seasurface to subseafloor
© The International Society for Microbial Ecology, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 979–989, doi:10.1038/ismej.2015.175.We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (greater than or equal to1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.This study was funded by the Biological Oceanography Program of the US National Science Foundation (grant OCE-0752336) and by the NSF-funded Center for Dark Energy Biosphere Investigations (grant NSF-OCE-0939564)
Recommended from our members
Distributions of topological observables in inclusive three- and four-jet events in pp collisions at [Formula: see text][Formula: see text].
This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7[Formula: see text] with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1[Formula: see text]. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MadGraph interfaced with pythia6 displays the overall best agreement with data
- …
