1,991 research outputs found
Response of resonant gravitational wave detectors to damped sinusoid signals
Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes
A new data analysis framework for the search of continuous gravitational wave signals
Continuous gravitational wave signals, like those expected by asymmetric
spinning neutron stars, are among the most promising targets for LIGO and Virgo
detectors. The development of fast and robust data analysis methods is crucial
to increase the chances of a detection. We have developed a new and flexible
general data analysis framework for the search of this kind of signals, which
allows to reduce the computational cost of the analysis by about two orders of
magnitude with respect to current procedures. This can correspond, at fixed
computing cost, to a sensitivity gain of up to 10%-20%, depending on the search
parameter space. Some possible applications are discussed, with a particular
focus on a directed search for sources in the Galactic center. Validation
through the injection of artificial signals in the data of Advanced LIGO first
observational science run is also shown.Comment: 21 pages, 8 figure
An improved algorithm for narrow-band searches of continuous gravitational waves
Continuous gravitational waves signals, emitted by asymmetric spinning
neutron stars, are among the main targets of current detectors like Advanced
LIGO and Virgo. In the case of sources, like pulsars, which rotational
parameters are measured through electromagnetic observations, typical searches
assume that the gravitational wave frequency is at a given known fixed ratio
with respect to the star rotational frequency. For instance, for a neutron star
rotating around one of its principal axis of inertia the gravitational signal
frequency would be exactly two times the rotational frequency of the star. It
is possible, however, that this assumption is wrong. This is why search
algorithms able to take into account a possible small mismatch between the
gravitational waves frequency and the frequency inferred from electromagnetic
observations have been developed. In this paper we present an improved pipeline
to perform such narrow-band searches for continuous gravitational waves from
neutron stars, about three orders of magnitude faster than previous
implementations. The algorithm that we have developed is based on the {\it
5-vectors} framework and is able to perform a fully coherent search over a
frequency band of width (Hertz) and for hundreds of spin-down
values running a few hours on a standard workstation. This new algorithm opens
the possibility of long coherence time searches for objects which rotational
parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ
A semi-coherent analysis method to search for continuous gravitational waves emitted by ultra-light boson clouds around spinning black holes
As a consequence of superradiant instability induced in Kerr black holes,
ultra-light boson clouds can be a source of persistent gravitational waves,
potentially detectable by current and future gravitational-wave detectors.
These signals have been predicted to be nearly monochromatic, with a small
steady frequency increase (spin-up), but given the several assumptions and
simplifications done at theoretical level, it is wise to consider, from the
data analysis point of view, a broader class of gravitational signals in which
the phase (or the frequency) slightly wander in time. Also other types of
sources, e.g. neutron stars in which a torque balance equilibrium exists
between matter accretion and emission of persistent gravitational waves, would
fit in this category. In this paper we present a robust and computationally
cheap analysis pipeline devoted to the search of such kind of signals. We
provide a full characterization of the method, through both a theoretical
sensitivity estimation and through the analysis of syntethic data in which
simulated signals have been injected. The search setup for both all-sky
searches and higher sensitivity directed searches is discussed.Comment: 13 pages, 13 figure
Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors
The gravitational wave resonant detectors can be used as detectors of quark
nuggets, like nuclearites (nuclear matter with a strange quark). This search
has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar
detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was
located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower
detectors: signals in the bar due to showers are continuously detected and used
to characterize the antenna performances. The bar excitation mechanism is based
on the so called thermo-acoustic effect, studied on dedicated experiments that
use particle beams. This mechanism predicts that vibrations of bars are induced
by the heat deposited in the bar from the particle. The geometrical acceptance
of the bar detectors is 19.5 sr, that is smaller than that of other
detectors used for similar searches. However, the detection mechanism is
completely different and is more straightforward than in other detectors. We
will show the results of ten years of data from NAUTILUS (2003-2012) and 7
years from EXPLORER (2003-2009). The experimental limits we obtain are of
interest because, for nuclearites of mass less than grams, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de
Janeiro 201
Service level Indication: A proposal for QoS monitoring in SLA -based multidomain networks
The offering of QoS based communication services has to face several challenges. Among these, the provisioning of an open and formalised framework for the collection and interchange of monitoring and performance data is feit as one of the most important issues to be solved. Indeed, this is true in seenarios where multiple providers are teaming (intentionally or not) for the construction of a complex service to be sold to a final user, like in the case of the creation of a virtual private network spanning multiple network Operators and infrastructures. In this case, failures in providing certain required Ievels in the quality parameters should be dealt with an immediate attribution of responsibility across the different entities involved in the end-to-end provisioning of the service. But also in cases apparently much simpler, for example when an user requires a video strearning service across a single operator network infrastructure, there is a demand for mechanisms for the measurement of the received quality of service across all the elements involved in the service provisioning: the server system, the network infrastructure, the dient terminal and the user application. lt is clear that this is a complex problem, involving different technologies, disciplines and research areas. In this paper, starting from the ongoing work in the definition of standard interfaces for the Quality of Service negotiation (Service Level Agreements) and control (Service Level Specifications), as weil as from the work ongoing in the IPFIX and IPPM working groups from the IETF, we introduce a new document specifically for delivering monitoring information to user applications. We called such a document Service Level Indication. We here aim at sketching a possible starting point for a research discussion. © 2003 by Springer Science+Business Media Dordrecht
Boom‐bust dynamics in biological invasions: towards an improved application of the concept
Boom‐bust dynamics – the rise of a population to outbreak levels, followed by a dramatic decline – have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom‐bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom‐bust dynamics and provide specific suggestions for improving the application of the boom‐bust concept. Boom‐bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom‐bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom‐bust dynamics. Understanding the frequency and importance of boom‐bust dynamics requires empirical studies of large, representative, long‐term data sets that use clear definitions of boom‐bust, appropriate analytical methods, and careful interpretations
Agricultural legacy, climate, and soil influence the restoration and carbon potential of woody regrowth in Australia
Opportunities for dual restoration and carbon benefits from naturally regenerating woody ecosystems in agricultural landscapes have been highlighted recently. The restoration capacity of woody ecosystems depends on the magnitude and duration of ecosystem modification, i.e., the ''agricultural legacy.'' However, this legacy may not influence carbon sequestration in the same way as restoration because carbon potential depends primarily on biomass accumulation, with little consideration of other attributes and functions of the ecosystem. Our present study simultaneously assesses the restoration and carbon potential of Acacia harpophylla regrowth, an extensive regrowth ecosystem in northeastern Australia. We used a landscape-scale survey of A. harpophylla regrowth to test the following hypotheses: (1) management history, in combination with climatic and edaphic factors, has long-term effects on stem densities, and (2) higher-density stands have lower restoration and carbon potential, which is also influenced by climatic and edaphic factors. We focused on the restoration of forest structure, which was characterized using stem density, aboveground biomass, stem heights, and stem diameters. Data were analyzed using multilevel models within the hierarchical Bayesian model (HBM) framework. We found strong support for both hypotheses. Repeated attempts at clearing Brigalow (A. harpophylla ecosystem) regrowth increases stem densities, and these densities remain high over the long term, particularly in high-rainfall areas and on gilgaied, high-clay soils (hypothesis 1). In models testing hypothesis 2, interactions between stem density and stand age indicate that higher-density stands have slower biomass accumulation and structural development in the long term. After accounting for stem density and stand age, annual rainfall had a positive effect on biomass accumulation and structural development. Other climate and soil variables were retained in the various models but had weaker effects. Spatial extrapolations of the HBMs indicated that the central and eastern parts of the study region are most suitable for biomass accumulation; however, these may not correspond to the areas that historically supported the highest biomass Brigalow forests. We conclude that carbon and restoration goals are largely congruent within areas of similar climate. At the regional scale, however, spatial prioritization of restoration and carbon projects may only be aligned where carbon benefits will be high. © 2010 by the Ecological Society of America
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Many experiments have searched for supersymmetric WIMP dark matter, with null
results. This may suggest to look for more exotic possibilities, for example
compact ultra-dense quark nuggets, widely discussed in literature with several
different names. Nuclearites are an example of candidate compact objects with
atomic size cross section. After a short discussion on nuclearites, the result
of a nuclearite search with the gravitational wave bar detectors Nautilus and
Explorer is reported. The geometrical acceptance of the bar detectors is 19.5
sr, that is smaller than that of other detectors used for similar
searches. However, the detection mechanism is completely different and is more
straightforward than in other detectors. The experimental limits we obtain are
of interest because, for nuclearites of mass less than g, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates. Particles with gravitational only interactions (newtorites) are
another example. In this case the sensitivity is quite poor and a short
discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1
- …
