58 research outputs found

    Актуальні проблеми застосування державних соціальних стандартів та гарантій в Україні

    No full text
    The 16.4Ma old Bogács Ignimbrite, located south of the Bükk Mountains, northern Hungary, was formed during a silicic ignimbrite flare-up in the Pannonian Basin that occurred from 20Ma to 13Ma. It comprises two main units, a lower, variably welded pumiceous and an upper, scoriaceous pyroclastic flow unit. Bulk chemistry of the juvenile clasts indicates a gradual change of geochemical character with an upward decreasing SiO 2 content through the stratigraphic section. A detailed in-situ major and trace element investigation of the main mineral phases and glasses combined with petrogenetic model calculations reveals complex magma reservoir processes. Based on the major and trace element variability, six juvenile clast types were distinguished and each contain fresh glass fractions with distinct compositions. The mineral assemblage consists of plagioclase, orthopyroxene, biotite with minor and variable amounts of quartz, amphibole, ilmenite, zircon and allanite. The anorthite content of the plagioclases varies from 20 to 90mol%, whilst the Enstatite content of orthopyroxenes covers also a wide range from 40 to 90mol%. This large compositional variation can be detected even in single crystals. This extreme geochemical variability can be explained by mixing of crystal mush bodies evolved from both basaltic and more silicic magmas. The calcic plagioclases (An=80-90mol%) and magnesian orthopyroxenes (En=70-90mol%) clearly indicate the role of primitive mafic magmas in the growth of the silicic magma reservoir, even though no basaltic volcanic activity was associated with the Miocene silicic volcanism in the Pannonian basin. The prolonged crystallization in the mushy sills resulted in compositionally different residual melt fractions that moved upwards and accumulated in separated melt pods at the roof of the magma reservoir. Intermittent intrusions of mafic and intermediate magmas into this silicic magma system could have resulted in thorough stirring of the crystal mush bodies and the melt pods, leading to eruptive products having compositionally heterogeneous glass and mineral assemblage

    Pargasite in fluid inclusions of mantle xenoliths from northeast Australia (Mt. Quincan): evidence of interaction with asthenospheric fluid

    No full text
    Three spinel lherzolite xenoliths from Mt. Quincan (Queensland, northeastern Australia) were studied with special attention to their enclosed fluid inclusions. The xenoliths are deformed, have porphyroclastic textures and overall show very similar petrographic features. The only significant difference is manifested in the abundance of fluid inclusions in the samples, mostly in orthopyroxene porphyroclasts. Xenolith JMTQ11 is fluid inclusion-free, whereas xenolith JMTQ20 shows a high abundance of fluid inclusions (fluid inclusion-rich). Xenolith JMTQ45 represents a transitional state between the previous two, as it contains only a small amount of fluid inclusions (fluid inclusion-bearing). Previous studies revealed that these xenoliths and the entrapped fluid inclusions represent a former addition of a MORB-type fluid to the pre-existing lithosphere, resulting from asthenosphere upwelling. There is a progressive enrichment in LREE, Nb, Sr and Ti from the fluid inclusion-free xenolith through the fluid inclusion-bearing one to the fluid inclusion-rich lherzolite. This suggests an increase in the extent of the interaction between the fluid-rich melt and the lherzolite wallrock. In addition, the same interaction is considered to be responsible for the formation of pargasitic amphibole as well. The presence of fluid inclusions indicates fluid migration at mantle depth, and their association with exsolution lamellae in orthopyroxene suggests fluid entrapment following the continental rifting (thermal relaxation) during cooling. A series of analyses, including microthermometry coupled with Raman spectroscopy, FTIR hyperspectral imaging, and Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) was carried out on the fluid inclusions. Based on the results, the entrapped high-density fluid is composed of 75–89 mol% CO2, 9–18 mol% H2O, 0.1–1.7 mol% N2 and ≤0.5 mol% H2S with dissolved trace elements (melt component). Our findings suggest that the metasomatic fluid phase could have been either a fluid/fluid-rich silicate melt released from the deeper asthenosphere, or a coexisting incipient fluid-rich silicate melt. Further cooling, possibly due to thermal relaxation and the upward migration of the fluid phase, caused the investigated lherzolites to reach pargasite stability conditions. We conclude that pargasite, even if only present in very limited modal proportions, can be a common phase at spinel lherzolite stability in the lithospheric upper mantle in continental rift – back-arc settings. Studies of fluid inclusions indicate that significant CO2 release from the asthenosphere in a continental rifting environment is resulting from asthenosphere upwelling and its addition to the lithospheric mantle together with fluid-rich melt – lherzolite interaction that leaves a CO2-rich fluid behind
    corecore