46 research outputs found

    Decreased T cell reactivity to Epstein–Barr virus infected lymphoblastoid cell lines in multiple sclerosis

    Get PDF
    Objective: To investigate T cell and antibody immunity to Epstein-Barr virus (EBV) in multiple sclerosis (MS)

    A novel myelin P0–specific T cell receptor transgenic mouse develops a fulminant autoimmune peripheral neuropathy

    Get PDF
    Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4+ T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4+ T cell hybridomas were generated from inflamed tissue–derived CD4+ T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0–specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3–5 wk of age. This abrupt disease was associated with the production of interferon γ by P0-specific T cells and a lack of CD4+ Foxp3+ regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy

    Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes

    Get PDF
    Background: Patients with multiple sclerosis (MS) have a decreased frequency of CD8(+) T cells reactive to their own Epstein-Barr virus (EBV) infected B cells. We have proposed that this might predispose to the development of MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. The decreased CD8(+) T cell response to EBV results from a general CD8(+) T cell deficiency and also a decreased proportion of EBV-specific T cells within the total CD8(+) T cell population. Because decreased HLA class I expression on monocytes and B cells has been reported in MS and could influence the generation and effector function of EBV-specific CD8(+) T cells, the present study was undertaken to measure the expression of HLA molecules on B cells and monocytes in patients with MS

    Variation in The Vitamin D Receptor Gene is Associated With Multiple Sclerosis in an Australian Population

    Get PDF
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population, one hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p_Gen = 0.016) and interestingly, a stronger difference for the allelic frequency (p_All = 0.0072). The Apa I alleles were also found to be associated with MS (p_All = 0.04) but genotype frequencies were not significantly different from controls (p_Gen = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing

    On the origin of the invasive olives (Olea europaea L., Oleaceae).

    Get PDF
    The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated

    Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips

    Get PDF
    The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications
    corecore