298 research outputs found

    Towards a European master programme on global software engineering

    Get PDF
    This paper presents a European Master programme on global software engineering (SE), being put forward by four leading institutions from Sweden, UK, Netherlands and Italy. The Global SE European Master (GSEEM) programme aims to provide students with an excellence in SE based on sound theoretical foundations and practical experience, as well as prepare them to participate in global development of complex and large software systems. GSEEM has been designed with three noteworthy aspects: 1) Three specialization profiles in which the consortium excels: Software Architecting, Real-time Embedded Systems Engineering, and Web Systems and Services Engineering. 2) Two market-driven routes: "professional" to work as professionals, and "scientific" to continue the education towards research degrees. 3) An innovative concept of "shared modules", delivered together by multiple institutions. Four types of shared modules are foreseen: "parallel" twin modules which run remotely between universities, "shifted" modules which teach SE concepts incrementally with shifts in study locations and timeline ,"complementary" modules in which complementary SE concepts are taught in parallel through shared projects, and "common" modules which share the presentations and the project. The profiles realize "integrated knowledge" by complementing partial knowledge available at partner institutions. The paper explains how GSEEM achieves the objectives of educating global software engineers

    Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons

    Full text link
    A detailed analysis of the spherically symmetric isolated horizon system is performed in terms of the connection formulation of general relativity. The system is shown to admit a manifestly SU(2) invariant formulation where the (effective) horizon degrees of freedom are described by an SU(2) Chern-Simons theory. This leads to a more transparent description of the quantum theory in the context of loop quantum gravity and modifications of the form of the horizon entropy.Comment: 30 pages, 1 figur

    Accelerated test execution using GPUs

    Get PDF
    As product life-cycles become shorter and the scale and complexity of systems increase, accelerating the execution of large test suites gains importance. Existing research has primarily focussed on techniques that reduce the size of the test suite. By contrast, we propose a technique that accelerates test execution, allowing test suites to run in a fraction of the original time, by parallel execution with a Graphics Processing Unit (GPU). Program testing, which is in essence execution of the same program with multiple sets of test data, naturally exhibits the kind of data parallelism that can be exploited with GPUs. Our approach simultaneously executes the program with one test case per GPU thread. GPUs have severe limitations, and we discuss these in the context of our approach and define the scope of our applications. We observe speed-ups up to a factor of 27 compared to single-core execution on conventional CPUs with embedded systems benchmark programs

    A realisation of Lorentz algebra in Lorentz violating theory

    Full text link
    A Lorentz non-invariant higher derivative effective action in flat spacetime, characterised by a constant vector, can be made invariant under infinitesimal Lorentz transformations by restricting the allowed field configurations. These restricted fields are defined as functions of the background vector in such a way that background dependance of the dynamics of the physical system is no longer manifest. We show here that they also provide a field basis for the realisation of Lorentz algebra and allow the construction of a Poincar\'e invariant symplectic two form on the covariant phase space of the theory.Comment: text body edited, reference adde

    Shell model on a random gaussian basis

    Full text link
    Pauli-projected random gaussians are used as a representation to solve the shell model equations. The elements of the representation are chosen by a variational procedure. This scheme is particularly suited to describe cluster formation and cluster decay in nuclei. It overcomes the basis-size problem of the ordinary shell model and the technical difficulties of the cluster-configuration shell model. The model reproduces the α\alpha-decay width of 212^{212}Po satisfactorily.Comment: Latex, Submitted to Phys. Lett. B, 7 pages, 2 figures available upon request, ATOMKI-1994-

    Deformation Quantization of Bosonic Strings

    Full text link
    Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme.Comment: 33+1 pages, harvmac file, no figure

    Comparative Quantizations of (2+1)-Dimensional Gravity

    Full text link
    We compare three approaches to the quantization of (2+1)-dimensional gravity with a negative cosmological constant: reduced phase space quantization with the York time slicing, quantization of the algebra of holonomies, and quantization of the space of classical solutions. The relationships among these quantum theories allow us to define and interpret time-dependent operators in the ``frozen time'' holonomy formulation.Comment: 24 pages, LaTeX, no figure
    • …
    corecore