2,586 research outputs found

    Does miRNA-155 Promote Cyclooxygenase-2 Expression in Cancer?

    Get PDF
    MicroRNA (miR)-155 and cyclooxygenase (COX)-2 are both elevated in numerous cancers including colorectal cancer. MiR-155 enhances COX-2 expression and is an established regulator of epithelial-mesenchymal transition and inflammation. Inhibition of miR-155 or COX-2 exhibit similar negative effects on tumorigenicity. Thus, it is hypothesized that miR-155 may be a promising target for antagonizing COX-2 expression in colorectal and other cancers

    3+1 Approach to the Long Wavelength Iteration Scheme

    Full text link
    Large-scale inhomogeneities and anisotropies are modeled using the Long Wavelength Iteration Scheme. In this scheme solutions are obtained as expansions in spatial gradients, which are taken to be small. It is shown that the choice of foliation for spacetime can make the iteration scheme more effective in two respects: (i) the shift vector can be chosen so as to dilute the effect of anisotropy on the late-time value of the extrinsic curvature of the spacelike hypersurfaces of the foliation; and (ii) pure gauge solutions present in a similar calculation using the synchronous gauge vanish when the spacelike hypersurfaces have extrinsic curvature with constant trace. We furthermore verify the main conclusion of the synchronous gauge calculation which is large-scale inhomogeneity decays if the matter--considered to be that of a perfect-fluid with a barotropic equation of state--violates the strong-energy condition. Finally, we obtain the solution for the lapse function and discuss its late-time behaviour. It is found that the lapse function is well-behaved when the matter violates the strong energy condition.Comment: 21 pages, TeX file, already publishe

    Relativistic Two-stream Instability

    Full text link
    We study the (local) propagation of plane waves in a relativistic, non-dissipative, two-fluid system, allowing for a relative velocity in the "background" configuration. The main aim is to analyze relativistic two-stream instability. This instability requires a relative flow -- either across an interface or when two or more fluids interpenetrate -- and can be triggered, for example, when one-dimensional plane-waves appear to be left-moving with respect to one fluid, but right-moving with respect to another. The dispersion relation of the two-fluid system is studied for different two-fluid equations of state: (i) the "free" (where there is no direct coupling between the fluid densities), (ii) coupled, and (iii) entrained (where the fluid momenta are linear combinations of the velocities) cases are considered in a frame-independent fashion (eg. no restriction to the rest-frame of either fluid). As a by-product of our analysis we determine the necessary conditions for a two-fluid system to be causal and absolutely stable and establish a new constraint on the entrainment.Comment: 15 pages, 2 eps-figure

    Collapse of a Circular Loop of Cosmic String

    Full text link
    We study the collapse of a circular loop of cosmic string. The gravitational field of the string is treated using the weak field approximation. The gravitational radiation from the loop is evaluated numerically. The memtric of the loop near the point of collapse is found analytically.Comment: 15 page

    Scaling of curvature in sub-critical gravitational collapse

    Get PDF
    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.

    Black holes and a scalar field in an expanding universe

    Full text link
    We consider a model of an inhomogeneous universe including a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without including scalar field to show that an averaged scale factor coincides with that of the Friedmann model. In this work we construct the inhomogeneous universe with an massless scalar field, where we assume that the averaged scale factor and scalar field are given by those of the Friedmann model including a scalar field. All of our calculations are carried out in the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to ADM mass if the mass evolves adiabatically, and obtain an equation relating our mass to the averaged scalar field and scale factor. As the results we find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe, and that the time dependence is qualitatively diffenrent according to the sign of the curvature of the universe: the mass increases decelerating in the closed universe case, is constant in the flat case and decreases decelerating in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravitiy with a scalar field potential. Furthermore, we discuss the relation of our results to the uniqueness theorem of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure

    IUPUI Center for Health Geographics

    Get PDF
    poster abstractThe IUPUI Center for Health Geographics develops and supports research innovation through integration of geographic information science, medical informatics, community informatics, and public health. Our areas of research emphasis include geospatial technologies and standards for health surveillance, spatial and temporal contexts of health behaviors and health outcomes, and space-time models for investigating disease and mortality trends. Our poster highlights our collaborations, which include interdisciplinary partnerships with investigators in the fields of geographic information science, social science, clinical epidemiology, medical informatics, and health services research

    r-modes in Relativistic Superfluid Stars

    Full text link
    We discuss the modal properties of the rr-modes of relativistic superfluid neutron stars, taking account of the entrainment effects between superfluids. In this paper, the neutron stars are assumed to be filled with neutron and proton superfluids and the strength of the entrainment effects between the superfluids are represented by a single parameter η\eta. We find that the basic properties of the rr-modes in a relativistic superfluid star are very similar to those found for a Newtonian superfluid star. The rr-modes of a relativistic superfluid star are split into two families, ordinary fluid-like rr-modes (ror^o-mode) and superfluid-like rr-modes (rsr^s-mode). The two superfluids counter-move for the rsr^s-modes, while they co-move for the ror^o-modes. For the ror^o-modes, the quantity κσ/Ω+m\kappa\equiv\sigma/\Omega+m is almost independent of the entrainment parameter η\eta, where mm and σ\sigma are the azimuthal wave number and the oscillation frequency observed by an inertial observer at spatial infinity, respectively. For the rsr^s-modes, on the other hand, κ\kappa almost linearly increases with increasing η\eta. It is also found that the radiation driven instability due to the rsr^s-modes is much weaker than that of the ror^o-modes because the matter current associated with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review
    corecore