2,586 research outputs found
Does miRNA-155 Promote Cyclooxygenase-2 Expression in Cancer?
MicroRNA (miR)-155 and cyclooxygenase (COX)-2 are both elevated in numerous cancers including colorectal cancer. MiR-155 enhances COX-2 expression and is an established regulator of epithelial-mesenchymal transition and inflammation. Inhibition of miR-155 or COX-2 exhibit similar negative effects on tumorigenicity. Thus, it is hypothesized that miR-155 may be a promising target for antagonizing COX-2 expression in colorectal and other cancers
3+1 Approach to the Long Wavelength Iteration Scheme
Large-scale inhomogeneities and anisotropies are modeled using the Long
Wavelength Iteration Scheme. In this scheme solutions are obtained as
expansions in spatial gradients, which are taken to be small. It is shown that
the choice of foliation for spacetime can make the iteration scheme more
effective in two respects: (i) the shift vector can be chosen so as to dilute
the effect of anisotropy on the late-time value of the extrinsic curvature of
the spacelike hypersurfaces of the foliation; and (ii) pure gauge solutions
present in a similar calculation using the synchronous gauge vanish when the
spacelike hypersurfaces have extrinsic curvature with constant trace. We
furthermore verify the main conclusion of the synchronous gauge calculation
which is large-scale inhomogeneity decays if the matter--considered to be that
of a perfect-fluid with a barotropic equation of state--violates the
strong-energy condition. Finally, we obtain the solution for the lapse function
and discuss its late-time behaviour. It is found that the lapse function is
well-behaved when the matter violates the strong energy condition.Comment: 21 pages, TeX file, already publishe
Recommended from our members
Semantic effects in sentence recall: The contribution of immediate vs delayed recall in language assessment
Sentence recall is increasingly used to assess language. It is widely debated what the task is actually testing, but one rarely explored aspect is the contribution of semantics to sentence recall. The few studies that have examined the role of semantics in sentence recall have employed an 'intrusion paradigm', following Potter and Lombardi (1990), and their paradigm relies on interference errors with conclusions based on an analysis of error patterns. We have instead manipulated the semantic plausibility of whole sentences to investigate the effects of semantics on immediate and delayed sentence recall. In Study 1, adults recalled semantically plausible and implausible sentences either immediately or after distracter tasks varying in lexical retrieval demands (backward counting and picture naming). Results revealed significant effects of plausibility, delay, and a significant interaction indicating increasing reliance on semantics as the demands of the distracter tasks increased. Study 2, conducted with 6-year-old children, employed delay conditions that were modified to avoid floor effects (delay with silence and forward counting) and a similar pattern of results emerged. This novel methodology provided robust evidence showing the effectiveness of delayed recall in the assessment of semantics and the effectiveness of immediate recall in the assessment of morphosyntax. The findings from our study clarify the linguistic mechanisms involved in immediate and delayed sentence recall, with implications for the use of recall tasks in language assessment.
Learning outcomes: The reader will be able to: (i) understand the difference between immediate and delayed sentence recall and different types of distractors, (ii) understand the utility of immediate and delayed recall sentence recall in language assessment, (iii) discuss suitability of delayed recall for the assessment of semantics
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
Recommended from our members
Commissural axon guidance in the developing spinal cord: from Cajal to the present day.
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases
Collapse of a Circular Loop of Cosmic String
We study the collapse of a circular loop of cosmic string. The gravitational
field of the string is treated using the weak field approximation. The
gravitational radiation from the loop is evaluated numerically. The memtric of
the loop near the point of collapse is found analytically.Comment: 15 page
Scaling of curvature in sub-critical gravitational collapse
We perform numerical simulations of the gravitational collapse of a
spherically symmetric scalar field. For those data that just barely do not form
black holes we find the maximum curvature at the position of the central
observer. We find a scaling relation between this maximum curvature and
distance from the critical solution. The scaling relation is analogous to that
found by Choptuik for black hole mass for those data that do collapse to form
black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.
Black holes and a scalar field in an expanding universe
We consider a model of an inhomogeneous universe including a massless scalar
field, where the inhomogeneity is assumed to consist of many black holes. This
model can be constructed by following Lindquist and Wheeler, which has already
been investigated without including scalar field to show that an averaged scale
factor coincides with that of the Friedmann model. In this work we construct
the inhomogeneous universe with an massless scalar field, where we assume that
the averaged scale factor and scalar field are given by those of the Friedmann
model including a scalar field. All of our calculations are carried out in the
framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous
universe, we define the mass of a black hole in the Brans-Dicke expanding
universe which is equivalent to ADM mass if the mass evolves adiabatically, and
obtain an equation relating our mass to the averaged scalar field and scale
factor. As the results we find that the mass has an adiabatic time dependence
in a sufficiently late stage of the expansion of the universe, and that the
time dependence is qualitatively diffenrent according to the sign of the
curvature of the universe: the mass increases decelerating in the closed
universe case, is constant in the flat case and decreases decelerating in the
open case. It is also noted that the mass in the Einstein frame depends on
time. Our results that the mass has a time dependence should be retained even
in the general scalar-tensor gravitiy with a scalar field potential.
Furthermore, we discuss the relation of our results to the uniqueness theorem
of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure
IUPUI Center for Health Geographics
poster abstractThe IUPUI Center for Health Geographics develops and supports research innovation through integration of geographic information science, medical informatics, community informatics, and public health. Our areas of research emphasis include geospatial technologies and standards for health surveillance, spatial and temporal contexts of health behaviors and health outcomes, and space-time models for investigating disease and mortality trends. Our poster highlights our collaborations, which include interdisciplinary partnerships with investigators in the fields of geographic information science, social science, clinical epidemiology, medical informatics, and health services research
r-modes in Relativistic Superfluid Stars
We discuss the modal properties of the -modes of relativistic superfluid
neutron stars, taking account of the entrainment effects between superfluids.
In this paper, the neutron stars are assumed to be filled with neutron and
proton superfluids and the strength of the entrainment effects between the
superfluids are represented by a single parameter . We find that the
basic properties of the -modes in a relativistic superfluid star are very
similar to those found for a Newtonian superfluid star. The -modes of a
relativistic superfluid star are split into two families, ordinary fluid-like
-modes (-mode) and superfluid-like -modes (-mode). The two
superfluids counter-move for the -modes, while they co-move for the
-modes. For the -modes, the quantity is
almost independent of the entrainment parameter , where and
are the azimuthal wave number and the oscillation frequency observed by an
inertial observer at spatial infinity, respectively. For the -modes, on
the other hand, almost linearly increases with increasing . It
is also found that the radiation driven instability due to the -modes is
much weaker than that of the -modes because the matter current associated
with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review
- …
