2,700 research outputs found
Two-step phase changes in cubic relaxor ferroelectrics
The field-driven conversion between the zero-field-cooled frozen relaxor
state and a ferroelectric state of several cubic relaxors is found to occur in
at least two distinct steps, after a period of creep, as a function of time.
The relaxation of this state back to a relaxor state under warming in zero
field also occurs via two or more sharp steps, in contrast to a one-step
relaxation of the ferroelectric state formed by field-cooling. An intermediate
state can be trapped by interrupting the polarization. Giant pyroelectric noise
appears in some of the non-equilibrium regimes. It is suggested that two
coupled types of order, one ferroelectric and the other glassy, may be required
to account for these data.Comment: 27 pages with 8 figures to appear in Phys. Rev.
Nontrivial dependence of dielectric stiffness and SHG on dc bias in relaxors and dipole glasses
Dielectric permittivity and Second Harmonic Generation (SHG) studies in the
field-cooled mode show a linear dependence of dielectric stiffness (inverse
dielectric permittivity) on dc bias in PMN-PT crystals and SHG intensity in
KTaO:Li at small Li concentrations. We explain this unusual result in the
framework of a theory of transverse, hydrodynamic-type, instability of local
polarization.Comment: 5 figure
Experimental and numerical investigation on forced convection in circular tubes with nanofluids
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this paper an experimental and numerical study to investigate the convective heat transfer
characteristics of fully developed turbulent flow of a water–Al2O3 nanofluid in a circular tube is presented.
The numerical simulations are accomplished on the experimental test section configuration. In the analysis,
the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional and steady state. The
single-phase model is employed to model the nanofluid mixture and k-ε model is used to describe the
turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates
and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and
Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all
nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer
coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher
concentrations whereas Nusselt numbers present lower values than the ones for pure water
Reply to Comment on "Quantum dense key distribution"
In this Reply we propose a modified security proof of the Quantum Dense Key
Distribution protocol detecting also the eavesdropping attack proposed by
Wojcik in his Comment.Comment: To appear on PRA with minor change
Thermodynamic and dynamic anomalies for a three dimensional isotropic core-softened potential
Using molecular dynamics simulations and integral equations (Rogers-Young,
Percus-Yevick and hypernetted chain closures) we investigate the thermodynamic
of particles interacting with continuous core-softened intermolecular
potential. Dynamic properties are also analyzed by the simulations. We show
that, for a chosen shape of the potential, the density, at constant pressure,
has a maximum for a certain temperature. The line of temperatures of maximum
density (TMD) was determined in the pressure-temperature phase diagram.
Similarly the diffusion constant at a constant temperature, , has a maximum
at a density and a minimum at a density .
In the pressure-temperature phase-diagram the line of extrema in diffusivity is
outside of TMD line. Although in this interparticle potential lacks
directionality, this is the same behavior observed in SPC/E water.Comment: 16 page
On the locus formed by the maximum heights of projectile motion with air resistance
We present an analysis on the geometrical place formed by the set of maxima
of the trajectories of a projectile launched in a media with linear drag. Such
a place, the locus of apexes, is written in term of the Lambert function in
polar coordinates, confirming the special role played by this function in the
problem. In order to characterize the locus, a study of its curvature is
presented in two parameterizations, in terms of the launch angle and in the
polar one. The angles of maximum curvature are compared with other important
angles in the projectile problem. As an addendum, we find that the synchronous
curve in this problem is a circle as in the drag-free case.Comment: 7 pages, 6 color eps figures. Synchronous curve added. Typos and
style corrected
Barkhausen Noise in a Relaxor Ferroelectric
Barkhausen noise, including both periodic and aperiodic components, is found
in and near the relaxor regime of a familiar relaxor ferroelectric,
PbMgNbO, driven by a periodic electric field. The
temperature dependences of both the amplitude and spectral form show that the
size of the coherent dipole moment changes shrink as the relaxor regime is
entered, contrary to expectations based on some simple models.Comment: 4 pages RevTeX4, 5 figures; submitted to Phys Rev Let
Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons
7 pages, 7 figures, 6 tables.-- Printed version published Aug 2007.The emission of potentially toxic compounds of arsenic and selenium present in flue gases from coal combustion and gasification processes has led to the need for gas cleaning systems capable of reducing their content. This work is focused on the capture of these elements in activated carbons which have proven to have good retention capacities for mercury compounds in gas phase. Two commercial activated carbons (Norit RBHG3 and Norit RB3) and a carbon prepared via activation of a pyrolysed coal (CA) were tested in simulated coal combustion and gasification atmospheres in a laboratory scale reactor. Arsenic and selenium compounds were retained to different extents on these carbons, retention efficiency depending mainly on the speciation of the element, which in turn depends on the gas atmosphere. Arsenic retention was similar in both combustion and gasification atmospheres unlike selenium retention. Moreover the retention of arsenic was lower than that of selenium.This work was carried out with the financial support of ECSC (7220-ED/095). We are also grateful to our colleagues in ICB (CSIC) R. Juan and C. Ruiz who prepared the CA activated carbon and Amelia Martínez Alonso of INCAR who assisted us in the textural characterization.Peer reviewe
Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3
Neutron inelastic scattering measurements of the polar TO phonon mode
dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal
anomalous behavior in which the optic branch appears to drop precipitously into
the acoustic branch at a finite value of the momentum transfer q=0.2 inverse
Angstroms, measured from the zone center. We speculate this behavior is the
result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure
- …
