24 research outputs found

    White Paper: Addressing the challenges of global warming for polar freshwater resources

    Get PDF
    The polar regions are undergoing rapid transformations due to global warming, resulting in temperature increases far surpassing the global average and significantly impacting ecosystems, especially freshwater systems. Understanding the implications of climate change on Arctic and Antarctic freshwater systems is crucial, as vital ecosystem services essential for sustaining human and environmental well-being may be disrupted. Shifts in freshwater availability due to changes in precipitation patterns, ice melt, and permafrost thaw pose significant challenges for local communities, exacerbating their vulnerabilities. Additionally, climate warming can affect water quality, e. g. by releasing pollutants and potential hazardous microorganisms, further jeopardizing human and natural ecosystem health. Arctic communities face multiple challenges in adapting to these changes, including limited resources and infrastructure that may not be resilient to environmental change. Urgent action is needed to mitigate these impacts and safeguard freshwater resources through evidence-based approaches, scientific research, policy involvement, and community engagement to ensure a sustainable future in the polar regions. In the pursuit of understanding freshwater dynamics in the Arctic and Antarctic, international collaboration across disciplines stands as a cornerstone, essential for addressing the impacts of climate change on polar freshwater resources. Initiatives aiming to understand the dynamics of transboundary water resources underscore the pivotal role of collaboration across institutions and nations, allowing for collective efforts in providing effective solutions to advance the current knowledge of polar ecosystems. Such collaboration not only benefits the polar regions but also carries implications for the global community, aligning with the UN’s SDGs. Therefore, funding mechanisms to bridge the knowledge-to-action gap and support international cooperation should be set high in the research agenda. The scientific and funding roadmap presented here should be implemented urgently, to maximise, in a 10-year term, the benefits to be gained through synergies with the next International Polar Year (2032-33). It will leverage existing transnational initiatives and frameworks, including the Antarctic governance framework, to guide future research initiatives towards sustainable management of freshwater resources. Overall, a comprehensive approach integrating pole-to-pole collaboration, strategic funding, and adherence to governance frameworks is paramount, ensuring collective efforts contribute to the well-being of polar communities and the broader global understanding of climate change implications

    Management of toxic cyanobacteria for drinking water production of Ain Zada Dam

    No full text
    International audienceBlooms of toxic cyanobacteria in Algerian reservoirs represent a potential health problem, mainly from drinking water that supplies the local population of Ain Zada (Bordj Bou Arreridj). The objective of this study is to monitor, detect, and identify the existence of cyanobacteria and microcystins during blooming times. Samples were taken in 2013 from eight stations. The results show that three potentially toxic cyanobacterial genera with the species Planktothrix agardhii were dominant. Cyanobacterial biomass, phycocyanin (PC) concentrations, and microcystin (MC) concentrations were high in the surface layer and at 14 m depth; these values were also high in the treated water. On 11 May 2013, MC concentrations were 6.3 μg/L in MC-LR equivalent in the drinking water. This study shows for the first time the presence of cyanotoxins in raw and treated waters, highlighting that regular monitoring of cyanobacteria and cyanotoxins must be undertaken to avoid potential health problems
    corecore