136 research outputs found
The friendship paradox in scale-free networks
Our friends have more friends than we do. That is the basis of the friendship
paradox. In mathematical terms, the mean number of friends of friends is higher
than the mean number of friends. In the present study, we analyzed the
relationship between the mean degree of vertices (individuals), , and the
mean number of friends of friends, , in scale-free networks with degrees
ranging from a minimum degree (k_min) to a maximum degree (k_max). We deduced
an expression for - for scale-free networks following a power-law
distribution with a given scaling parameter (alpha). Based on this expression,
we can quantify how the degree distribution of a scale-free network affects the
mean number of friends of friends.Comment: 9 pages, 2 figure
The applicability of spectroscopy methods for estimating potentially toxic elements in soils : state-of-the-art and future trends
Potentially toxic elements (PTEs) in soils pose severe threats to the environment and human health. It is therefore imperative to have access to simple, rapid, portable, and accurate methods for their detection in soils. In this regard, the review introduces recent progresses made in the development and applications of spectroscopic methods for in situ semi-quantitative and quantitative detection of PTEs in soil and critically compares them to standard analytical methods. The advantages and limitations of these methods are discussed together with recent advances in chemometrics and data mining techniques allowing to extract useful information based on spectral data. Furthermore, the factors influencing soil spectra and data analysis are discussed and recommendations on how to reduce or eliminate their influences are provided. Future research and development needs for spectroscopy techniques are emphasized, and an analytical framework based on technology integration and data fusion is proposed to improve the measurement accuracy of PTEs in soil
Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression
A number of studies have shown that visible and near infrared spectroscopy (VIS-NIRS) offers a rapid on-site measurement tool for the determination of total contaminant concentration of petroleum hydrocarbons compounds (PHC), heavy metals and metalloids (HM) in soil. However none of them have yet assessed the feasibility of using VIS-NIRS coupled to random forest (RF) regression for determining both the total and bioavailable concentrations of complex chemical mixtures. Results showed that the predictions of the total concentrations of polycyclic aromatic hydrocarbons (PAH), PHC, and alkanes (ALK) were very good, good and fair, and in contrast, the predictions of the bioavailable concentrations of the PAH and PHC were only fair, and poor for ALK. A large number of trace elements, mainly lead (Pb), aluminium (Al), nickel (Ni), chromium (Cr), cadmium (Cd), iron (Fe) and zinc (Zn) were predicted with very good or good accuracy. The prediction results of the total HMs were also better than those of the bioavailable concentrations. Overall, the results demonstrate that VIS-NIR DRS coupled to RF is a promising rapid measurement tool to inform both the distribution and bioavailability of complex chemical mixtures without the need of collecting soil samples and lengthy extraction for further analysis
Insights into mixed contaminants interactions and its implication for heavy metals and metalloids mobility, bioavailability and risk assessment
Mobility of heavy metals at contaminated sites is mainly influenced by the soil physicochemical properties and environmental conditions, therefore assessing heavy metals (HMs) and metalloids fractionation can provide insights into their potential risk and the mechanisms that regulate bioavailability. A 12-months mesocosms experiment was setup to investigate the effect of physicochemical factors (pH, moisture, and temperature) and weathering (time) on HMs and metalloids fractionation in three different multi-contaminated soil matrices (low, medium, and high contamination) collected from a soil treatment facility located in the United Kingdom, and two rural contaminated soil samples. The study demonstrates that even though Pb and Zn were found associated with the exchangeable fraction in the soil with the highest contamination (total average Pb 3400 mg/kg, and total average Zn 2100 mg/kg in Soil C), neither the condition applied nor the weathering caused an increase in their mobility. Although it was expected that lower pH (4.5) would favours the dissociation of HMs and metalloids, no significant differences were observed, potentially due to the initial alkaline pH of the genuine-contaminated soil samples. The results show that even though total concentration of Pb, Cu, and Zn exceed the soil standards and guideline values, HMs were predominantly associated with the non-exchangeable fraction, while only 5% were dissolved in the pore water fraction (potentially bioavailable). In addition, the mobility and bioavailability of HMs remained constant over the 12 months monitoring, suggesting that these soils pose negligible risk to the environment
Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils
This study investigated the sensitivity of visible near-infrared spectroscopy (vis-NIR) to discriminate between fresh and weathered oil contaminated soils. The performance of random forest (RF) and partial least squares regression (PLSR) for the estimation of total petroleum hydrocarbon (TPH) throughout the time was also explored. Soil samples (n = 13) with 5 different textures of sandy loam, sandy clay loam, clay loam, sandy clay and clay were collected from 10 different locations across the Cranfield University's Research Farm (UK). A series of soil mesocosms was then set up where each soil sample was spiked with 10 ml of Alaskan crude oil (equivalent to 8450 mg/kg), allowed to equilibrate for 48 h (T2 d) and further kept at room temperature (21 °C). Soils scanning was carried out before spiking (control TC) and then after 2 days (T2 d) and months 4 (T4 m), 8 (T8 m), 12 (T12 m), 16 (T16 m), 20 (T20 m), 24 (T24 m), whereas gas chromatography mass spectroscopy (GC–MS) analysis was performed on T2 d, T4 m, T12 m, T16 m, T20 m, and T24 m. Soil scanning was done simultaneously using an AgroSpec spectrometer (305 to 2200 nm) (tec5 Technology for Spectroscopy, Germany) and Analytical Spectral Device (ASD) spectrometer (350 to 2500 nm) (ASDI, USA) to assess and compare their sensitivity and response against GC–MS data. Principle component analysis (PCA) showed that ASD performed better than tec5 for discriminating weathered versus fresh oil contaminated soil samples. The prediction results proved that RF models outperformed PLSR and resulted in coefficient of determination (R2) of 0.92, ratio of prediction deviation (RPD) of 3.79, and root mean square error of prediction (RMSEP) of 108.56 mg/kg. Overall, the results demonstrate that vis–NIR is a promising tool for rapid site investigation of weathered oil contamination in soils and for TPH monitoring without the need of collecting soil samples and lengthy hydrocarbon extraction for further quantification analysis
New insights in pediatrics in 2021: choices in allergy and immunology, critical care, endocrinology, gastroenterology, genetics, haematology, infectious diseases, neonatology, neurology, nutrition, palliative care, respiratory tract illnesses and telemedicine
In this review, we report the developments across pediatric subspecialties that have been published in the Italian Journal of Pediatrics in 2021. We highlight advances in allergy and immunology, critical care, endocrinology, gastroenterology, genetics, hematology, infectious diseases, neonatology, neurology, nutrition, palliative care, respiratory tract illnesses and telemedicine
Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK
The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills
Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils
A six-month laboratory scale study was carried out to investigate the effect of biochar and compost amendments on complex chemical mixtures of tar, heavy metals and metalloids in two genuine contaminated soils. An integrated approach, where organic and inorganic contaminants bioavailability and distribution changes, along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point. Both compost and biochar amendment (p = 0.005) as well as incubation time (p = 0.001) significantly affected the total and bioavailable concentrations of the total petroleum hydrocarbons (TPH) in the two soils. Specifically, TPH concentration decreased by 46% and 30% in Soil 1 and Soil 2 amended with compost. These decreases were accompanied by a reduction of 78% (Soil 1) and 6% (Soil 2) of the bioavailable hydrocarbons and the most significant decrease was observed for the medium to long chain aliphatic compounds (EC16–35) and medium molecular weight aromatic compounds (EC16–21). Compost amendment enhanced the degradation of both the aliphatic and aromatic fractions in the two soils, while biochar contributed to lock the hydrocarbons in the contaminated soils. Neither compost nor biochar affected the distribution and behaviour of the heavy metals (HM) and metalloids in the different soil phases, suggesting that the co-presence of heavy metals and metalloids posed a low risk. Strong negative correlations were observed between the bioavailable hydrocarbon fractions and the ecotoxicological assays suggesting that when bioavailable concentrations decreased, the toxicity also decreased. This study showed that adopting a combined diagnostic approach can significantly help to identify optimal remediation strategies and contribute to change the over-conservative nature of the current risk assessments thus reducing the costs associated with remediation endpoint
The applicability of spectroscopy methods for estimating potentially toxic elements in soils: state-of-the art and future trends
Potentially toxic elements (PTEs) in soils pose severe threats to the environment and human health. It is therefore imperative to have access to simple, rapid, portable, and accurate methods for their detection in soils. In this regard, the review introduces recent progresses made in the development and applications of spectroscopic methods for in situ semi-quantitative and quantitative detection of PTEs in soil and critically compares them to standard analytical methods. The advantages and limitations of these methods are discussed together with recent advances in chemometrics and data mining techniques allowing to extract useful information based on spectral data. Furthermore, the factors influencing soil spectra and data analysis are discussed and recommendations on how to reduce or eliminate their influences are provided. Future research and development needs for spectroscopy techniques are emphasized, and an analytical framework based on technology integration and data fusion is proposed to improve the measurement accuracy of PTEs in soil
- …