14 research outputs found

    The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA–topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts

    Get PDF
    Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA–Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA–Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA–Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases

    Current management of the gastrointestinal complications of systemic sclerosis.

    Get PDF
    Systemic sclerosis is a multisystem autoimmune disorder that involves the gastrointestinal tract in more than 90% of patients. This involvement can extend from the mouth to the anus, with the oesophagus and anorectum most frequently affected. Gut complications result in a plethora of presentations that impair oral intake and faecal continence and, consequently, have an adverse effect on patient quality of life, resulting in referral to gastroenterologists. The cornerstones of gastrointestinal symptom management are to optimize symptom relief and monitor for complications, in particular anaemia and malabsorption. Early intervention in patients who develop these complications is critical to minimize disease progression and improve prognosis. In the future, enhanced therapeutic strategies should be developed, based on an ever-improving understanding of the intestinal pathophysiology of systemic sclerosis. This Review describes the most commonly occurring clinical scenarios of gastrointestinal involvement in patients with systemic sclerosis as they present to the gastroenterologist, with recommendations for the suggested assessment protocol and therapy in each situation
    corecore