72 research outputs found

    Chlamydia trachomatis Strains Show Specific Clustering for Men Who Have Sex with Men Compared to Heterosexual Populations in Sweden, the Netherlands, and the United States

    Get PDF
    High-resolution genotyping of Chlamydia trachomatis improves the characterization of strains infecting different patient groups and sexual networks. In this study, multilocus sequence typing (MLST) and ompA sequence determination were used for an analysis of C. trachomatis strains from 203 men who have sex with men (MSM) from Sweden, the Netherlands, and the United States. The results obtained were compared with data from 153 heterosexual women from Sweden and the Netherlands. The overlap in MLST/ompA profiles between MSM from Sweden and the Netherlands was 68%, while the overlap between heterosexual populations from these countries was only 18%. The distribution of genotypes in MSM from the United States was less similar to that in MSM from the European countries, with 45% and 46% overlaps for MSM in Sweden and the Netherlands, respectively. Minimum-spanning-tree analysis of MLST/ompA sequence types identified two large clusters that contained almost exclusively samples from MSM and comprised 74% of all MSM samples. Three other clusters were predominated by samples from women but also contained MSM specimens. Of 19 detected variants of the MLST target CT144, three variants were highly associated with MSM. Our study supports the hypotheses of both tissue tropism as well as epidemiological network structures as explanations for the linkage between specific genetic variants and sexual orientation

    Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    Get PDF
    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation

    The Functioning of the Drosophila CPEB Protein Orb Is Regulated by Phosphorylation and Requires Casein Kinase 2 Activity

    Get PDF
    The Orb CPEB protein regulates translation of localized mRNAs in Drosophila ovaries. While there are multiple hypo- and hyperphosphorylated Orb isoforms in wild type ovaries, most are missing in orbF303, which has an amino acid substitution in a buried region of the second RRM domain. Using a proteomics approach we identified a candidate Orb kinase, Casein Kinase 2 (CK2). In addition to being associated with Orb in vivo, we show that ck2 is required for orb functioning in gurken signaling and in the autoregulation of orb mRNA localization and translation. Supporting a role for ck2 in Orb phosphorylation, we find that the phosphorylation pattern is altered when ck2 activity is partially compromised. Finally, we show that the Orb hypophosphorylated isoforms are in slowly sedimenting complexes that contain the translational repressor Bruno, while the hyperphosphorylated isoforms assemble into large complexes that co-sediment with polysomes and contain the Wisp poly(A) polymerase

    MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival

    Get PDF
    MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1-c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival

    An industrial case study on using language workbench technology for realizing model-driven engineering

    No full text
    Model Driven Engineering (MDE) is a proven approach to improve software development processes by automation. However, traditional development of MDE tooling requires a high upfront cost. Recent developments in language workbench technologies promise to significantly reduce these investment costs. By providing domain experts with targeted projections, the speed and quality of delivering customer value is improved. This paper provides results from an industrial case study in the telecommunications domain and compares the value of using a language workbench to traditional MDE technologies. Evaluation of the approach was based on qualitative research strategy which involved a proof of concept implementation and effort estimations by tooling experts. Our results, using the Intentional Domain Workbench, indicate that applying a language workbench promises significant improvements in several aspects of MDE based software development. Most notably in this paper: (1) improved speed in development of domain specific tooling and (2) improved speed in software development process re-engineering

    Cloning of rat MEK kinase 1 cDNA reveals an endogenous membrane-associated 195-kDa protein with a large regulatory domain.

    No full text
    The coding sequence of rat MEK kinase 1 (MEKK1) has been determined from multiple, independent cDNA clones. The cDNA is full-length based on the presence of stop codons in all three reading frames of the 5' untranslated region. Probes from the 5' and the 3' coding sequences both hybridize to a 7-kb mRNA. The open reading frame is 4.5 kb and predicts a protein with molecular mass of 161,225 Da, which is twice the size of the previously published MEKK1 sequence and reveals 801 amino acids of novel coding sequence. The novel sequence contains two putative pH domains, two proline-rich regions, and a cysteine-rich region. Antisera to peptides derived from this new sequence recognize an endogenous protein in human and rodent cells of 195 kDa, consistent with the size of the expressed rat MEKK1 clone. Endogenous and recombinant rat MEKK1 are enriched in membranes; little of either is found in soluble fractions. Expression of recombinant rat MEKK1 leads to activation of three mitogen-activated protein kinase modules in the order c-Jun N-terminal kinase/stress-activated protein kinase > p38 mitogen-activated protein kinase = extracellular signal-regulated kinase 2
    • …
    corecore