26 research outputs found

    Moisture susceptibility of high and low compaction dry process crumb rubber modified asphalt mixtures

    Get PDF
    The field performance of dry process crumb rubber-modified (CRM) asphalt mixtures has been reported to be inconsistent with stripping and premature cracking on the surfacing. One of the concerns is that, because achieving field compaction of CRM material is difficult due to the inherent resilient nature of the rubber particle, nonuniform field compaction may lead to a deficient bond between rubber and bitumen. To assess the influence of compaction, a series of CRM and control mixtures was produced and compacted at two levels: 4% (low, optimum laboratory compaction) and 8% (high, field experience) air void content. The long-term durability, in regard to moisture susceptibility of the mixtures, was assessed by conducting repeated moisture conditioning cycles. Mechanical properties (stiffness, fatigue, and resistance to permanent deformation) were determined in the Nottingham Asphalt Tester. Results indicated that compared with conventional mixtures, the CRM mixtures, regardless of compaction effort, are more susceptible to moisture with the degree of susceptibility primarily depending on the amount of rubber in the mixture, rather than the difference in compaction. This behavior is different from that of conventional mixtures in which, as expected, poorly compacted mixtures were found to be more susceptible to moisture than were well-compacted mixtures

    Evaluation of Pavement Strain Gauge Repeatability

    No full text

    Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp

    Get PDF
    International audienceLight is a critical determinant of plant shape by controlling branching patterns and bud burst in many species. To gain insight into how light induces bud burst, we investigated whether its inductive effect in rose was related to gibberellin (GA) biosynthesis. In axillary buds of beheaded plants subject to light, the expression of two GA biosynthesis genes (RoGA20ox and RoGA3ox) was promptly and strongly induced, while that of a GA-catabolism genes (RoGA2ox) was reduced. By contrast, lower expression levels of these two GA biosynthesis genes were found in darkness, and correlated with a total inhibition of bud burst. This effect was dependent on both light intensity and quality. In in vitro cultured buds, the inductive effect of light on the growth of preformed leaves and SAM organogenic activity was inhibited by ancymidol and paclobutrazol, two effectors of GA biosynthesis. This effect was concentration-dependent, and negated by GA(3). However, GA(3) alone could not rescue bud burst in the dark. GA biosynthesis was also required for the expression and activity of a vacuolar invertase, and therefore for light-induced sugar metabolism within buds. These findings are evidence that GA biosynthesis contributes to the light effect on bud burst and lay the foundations of a better understanding of its exact role in plant branching
    corecore