63 research outputs found

    Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germiantion of Sisymbrium officinales L. Seeds

    Get PDF
    The rupture of the seed coat and that of the endosperm were found to be two sequential events in the germination of Sisymbrium officinale L. seeds, and radicle protrusion did not occur exactly in the micropylar area but in the neighboring zone. The germination patterns were similar both in the presence of gibberellins (GA4+7) and in presence of ethrel. The analysis of genes involved in GAs synthesis and breakdown demonstrated that (1) SoGA2ox6 expression peaked just prior to radicle protrusion (20–22 h), while SoGA3ox2 and SoGA20ox2 expression was high at early imbibition (6 h) diminishing sharply thereafter; (2) the accumulation of SoGA20ox2 transcript was strongly inhibited by paclobutrazol (PB) as well as by inhibitors of ET synthesis and signaling (IESS) early after imbibition (6 h), while SoGA3ox2 and SoGA2ox6 expression was slowly depressed as germination progressed; (3) ethrel and GA4+7 positively or negatively affected expression of SoGA3ox2, SoGA20ox2, and SoGA2ox6, depending on the germination period studied. Regarding genes involved in ET synthesis, our results showed that SoACS7 was expressed, just prior to radicle emergence while SoACO2 expression slowly increased as germination progressed. Both genes were strongly inhibited by PB but were almost unaffected by externally added ethrel or GA4+7. These results suggest that GAs are more important than ET during the early stages of imbibition, while ET is more important at the late phases of germination of S. officinale L. seed

    Karrikins: A new family of plant growth regulators in smoke

    No full text
    Karrikins are a chemically defined family of plant growth regulators discovered in smoke from burning plant material. Karrikins are potent in breaking dormancy of seeds of many species adapted to environments that regularly experience fire and smoke. The recent discovery that karrikins trigger seed germination and control seedling growth in taxa that would rarely experience fire indicates that their significance could extend far beyond fire ecology. This is exemplified by new studies showing that seeds of Arabidopsis thaliana respond sensitively and specifically to karrikins in smoke. These exciting discoveries might be explained if karrikins are produced in the environment by processes other than fire, such as by chemical or microbial degradation of vegetation in response to disturbance of the soil or removal of the plant canopy. Another hypothesis is that plants contain endogenous karrikins that function naturally in the control of seed germination and that species from fire-prone habitats have evolved to respond also to exogenous karrikins. A variant on this hypothesis is that karrikins mimic endogenous plant hormones such as terpenoids that control seed germination. The evidence for these hypotheses is discussed, but whatever the explanation karrikins are now firmly established as an important family of naturally occurring plant growth regulators. © 2009 Elsevier Ireland Ltd. All rights reserved

    Caryophyllaceae cyclic peptide biosynthesis

    No full text
    Background: In the Caryophyllaceae, cyclic peptides (CP) are biosynthesized from linear precursors via an unknown pathway. Results: Two protease-like enzymes are involved in precursor processing. Conclusion: A serine protease-like enzyme was recruited for the cyclization step in CP biosynthesis. Significance: This represents a very significant advance in our understanding of the mode and evolution of CP biosynthesis in plants. Caryophyllaceae-type cyclic peptides (CPs) of 5\u201312 proteinogenic amino acids occur in 10 plant families. In Saponaria vaccaria (Caryophyllaceae), they have been shown to be formed from linear peptide precursors derived from ribosomal translation. There is also evidence for such precursors in other members of the Caryophyllaceae, Rutaceae, and Linaceae families. The biosynthesis of CP in the developing seeds of S. vaccaria was investigated with respect to the enzymes involved in precursor processing. Through biochemical assays with seed extracts and synthetic peptides, an enzyme named oligopeptidase 1 (OLP1) was found that catalyzes the cleavage of intermediates at the N terminus of the incipient CP. A second enzyme, peptide cyclase 1 (PCY1), which was separated chromatographically from OLP1, was found to act on the product of OLP1, giving rise to a cyclic peptide and concomitant removal of a C-terminal flanking sequence. PCY1 was partially purified, and using the methods of proteomics, a full-length cDNA clone encoding an enzyme matching the properties of PCY1 was obtained. The substrate specificity of purified recombinant PCY1, believed to be the first cloned plant enzyme whose function is peptide cyclization, was tested with synthetic peptides. The results are discussed in the light of CP biosynthetic systems of other organisms.Peer reviewed: YesNRC publication: Ye

    ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum gaud

    No full text
    Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds
    • …
    corecore