23 research outputs found

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    The Cues and Care Trial: A randomized controlled trial of an intervention to reduce maternal anxiety and improve developmental outcomes in very low birthweight infants

    Get PDF
    Abstract Background Very low birthweight infants are at risk for deficits in cognitive and language development, as well as attention and behaviour problems. Maternal sensitive behaviour (i.e. awareness of infant cues and appropriate responsiveness to those cues) in interaction with her very low birthweight infant is associated with better outcomes in these domains; however, maternal anxiety interferes with the mother's ability to interact sensitively with her very low birthweight infant. There is a need for brief, cost-effective and timely interventions that address both maternal psychological distress and interactive behaviour. The Cues and Care trial is a randomized controlled trial of an intervention designed to reduce maternal anxiety and promote sensitive interaction in mothers of very low birthweight infants. Methods and design Mothers of singleton infants born at weights below 1500 g are recruited in the neonatal intensive care units of 2 tertiary care hospitals, and are randomly assigned to the experimental (Cues) intervention or to an attention control (Care) condition. The Cues intervention teaches mothers to attend to their own physiological, cognitive, and emotional cues that signal anxiety and worry, and to use cognitive-behavioural strategies to reduce distress. Mothers are also taught to understand infant cues and to respond sensitively to those cues. Mothers in the Care group receive general information about infant care. Both groups have 6 contacts with a trained intervener; 5 of the 6 sessions take place during the infant's hospitalization, and the sixth contact occurs after discharge, in the participant mother's home. The primary outcome is maternal symptoms of anxiety, assessed via self-report questionnaire immediately post-intervention. Secondary outcomes include maternal sensitive behaviour, maternal symptoms of posttraumatic stress, and infant development at 6 months corrected age. Discussion The Cues and Care trial will provide important information on the efficacy of a brief, skills-based intervention to reduce anxiety and increase sensitivity in mothers of very low birthweight infants. A brief intervention of this nature may be more readily implemented as part of standard neonatal intensive care than broad-based, multi-component interventions. By intervening early, we aim to optimize developmental outcomes in these high risk infants. Trial Registration Current Controlled Trials ISRCTN00918472 The Cues and Care Trial: A randomized controlled trial of an intervention to reduce maternal anxiety and improve developmental outcomes in very low birthweight infant

    Preventing academic difficulties in preterm children:A randomised controlled trial of an adaptive working memory training intervention - IMPRINT study

    Get PDF
    BACKGROUND: Very preterm children exhibit difficulties in working memory, a key cognitive ability vital to learning information and the development of academic skills. Previous research suggests that an adaptive working memory training intervention (Cogmed) may improve working memory and other cognitive and behavioural domains, although further randomised controlled trials employing long-term outcomes are needed, and with populations at risk for working memory deficits, such as children born preterm. In a cohort of extremely preterm (<28 weeks’ gestation)/extremely low birthweight (<1000 g) 7-year-olds, we will assess the effectiveness of Cogmed in improving academic functioning 2 years’ post-intervention. Secondary objectives are to assess the effectiveness of Cogmed in improving working memory and attention 2 weeks’, 12 months’ and 24 months’ post-intervention, and to investigate training related neuroplasticity in working memory neural networks 2 weeks’ post-intervention. METHODS/DESIGN: This double-blind, placebo-controlled, randomised controlled trial aims to recruit 126 extremely preterm/extremely low birthweight 7-year-old children. Children attending mainstream school without major intellectual, sensory or physical impairments will be eligible. Participating children will undergo an extensive baseline cognitive assessment before being randomised to either an adaptive or placebo (non-adaptive) version of Cogmed. Cogmed is a computerised working memory training program consisting of 25 sessions completed over a 5 to 7 week period. Each training session takes approximately 35 minutes and will be completed in the child’s home. Structural, diffusion and functional Magnetic Resonance Imaging, which is optional for participants, will be completed prior to and 2 weeks following the training period. Follow-up assessments focusing on academic skills (primary outcome), working memory and attention (secondary outcomes) will be conducted at 2 weeks’, 12 months’ and 24 months’ post-intervention. DISCUSSION: To our knowledge, this study will be the first randomised controlled trial to (a) assess the effectiveness of Cogmed in school-aged extremely preterm/extremely low birthweight children, while incorporating advanced imaging techniques to investigate neural changes associated with adaptive working memory training, and (b) employ long-term follow-up to assess the potential benefit of improved working memory on academic functioning. If effective, Cogmed would serve as a valuable, available intervention for improving developmental outcomes for this population. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12612000124831

    Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer

    Get PDF
    With the recent comprehensive mapping of cancer genomes, there is now a need for functional approaches to edit the aberrant epigenetic state of key cancer drivers to reprogram the epi-pathology of the disease. In this study we utilized a programmable DNA-binding methyltransferase to induce targeted incorporation of DNA methylation (DNAme) in the SOX2 oncogene in breast cancer through a six zinc finger (ZF) protein linked to DNA methyltransferase 3A (ZF-DNMT3A). We demonstrated long-lasting oncogenic repression, which was maintained even after suppression of ZF-DNMT3A expression in tumor cells. The de novo DNAme was faithfully propagated and maintained through cell generations even after the suppression of the expression of the chimeric methyltransferase in the tumor cells. Xenograft studies in NUDE mice demonstrated stable SOX2 repression and long-term breast tumor growth inhibition, which lasted for >100 days post implantation of the tumor cells in mice. This was accompanied with a faithful maintenance of DNAme in the breast cancer implants. In contrast, downregulation of SOX2 by ZF domains engineered with the Krueppel-associated box repressor domain resulted in a transient and reversible suppression of oncogenic gene expression. Our results indicated that targeted de novo DNAme of the SOX2 oncogenic promoter was sufficient to induce long-lasting epigenetic silencing, which was not only maintained during cell division but also significantly delayed the tumorigenic phenotype of cancer cells in vivo, even in the absence of treatment. Here, we outline a genome-based targeting approach to long-lasting tumor growth inhibition with potential applicability to many other oncogenic drivers that are currently refractory to drug design
    corecore