1,349 research outputs found
Improving Temporal Accuracy of Human Metabolic Chambers for Dynamic Metabolic Studies
Metabolic chambers are powerful tools for assessing human energy expenditure, providing flexibility and comfort for the subjects in a near free-living environment. However, the flexibility offered by the large living room size creates challenges in the assessment of dynamic human metabolic signals—such as those generated during high-intensity interval training and short-term involuntary physical activities—with sufficient temporal accuracy. Therefore, this paper presents methods to improve the temporal accuracy of metabolic chambers. The proposed methods include 1) adopting a shortest possible step size, here one minute, to compute the finite derivative terms for the metabolic rate calculation, and 2) applying a robust noise reduction method—total variation denoising—to minimize the large noise generated by the short derivative term whilst preserving the transient edges of the dynamic metabolic signals. Validated against 24-hour gas infusion tests, the proposed method reconstructs dynamic metabolic signals with the best temporal accuracy among state-of-the-art approaches, achieving a root mean square error of 0.27 kcal/min (18.8 J/s), while maintaining a low cumulative error in 24-hour total energy expenditure of less than 45 kcal/day (188280 J/day). When applied to a human exercise session, the proposed methods also show the best performance in terms of recovering the dynamics of exercise energy expenditure. Overall, the proposed methods improve the temporal resolution of the chamber system, enabling metabolic studies involving dynamic signals such as short interval exercises to carry out the metabolic chambers
Metabolic effects of FGF-21: thermoregulation and beyond
Fibroblast growth factor (FGF)-21, a member of the FGF family, is a novel hormone involved in the control of metabolism by modulating glucose homeostasis, insulin sensitivity, ketogenesis, and promoting adipose tissue “browning.” Recent studies demonstrated that brown adipose tissue is not only a target for FGF-21, but is also a potentially important source of systemic FGF-21. These findings support the hypothesis that FGF-21 plays a physiologic role in thermogenesis and thermogenic recruitment of white adipose tissue by an autocrine–paracrine axis. This review examines the role of FGF-21 in thermogenesis from the perspective of cell-based, animal model, and human studies. We also present recent advances in the characterization of FGF-21’s regulation of metabolism
One-Loop Effect of Null-Like Cosmology's Holographic Dual Super-Yang-Mills
We calculate the 1-loop effect in super-Yang-Mills which preserves
1/4-supersymmetries and is holographically dual to the null-like cosmology with
a big-bang singularity. Though the bosonic and fermionic spectra do not agree
precisely, we do obtain vanishing 1-loop vacuum energy for generic warped
plane-wave type backgrounds with a big-bang singularity. Moreover, we find that
the cosmological "constant" contributed either by bosons or fermions is
time-dependent. The issues about the particle production of some background and
about the UV structure are also commented. We argue that the effective higher
derivative interactions are suppressed as long as the Fourier transform of the
time-dependent coupling is UV-finite. Our result holds for scalar
configurations that are BPS but with arbitrary time-dependence. This suggests
the existence of non-renormalization theorem for such a new class of
time-dependent theories. Altogether, it implies that such a super-Yang-Mills is
scale-invariant, and that its dual bulk quantum gravity might behave regularly
near the big bang.Comment: 20 pages, v2 add comments and references, v3 clarify BPS condition &
add new discussion on particle production and UV structure, v4&v5 minor
changes, final to JHE
Thyroid Hormone Mediated Modulation of Energy Expenditure
Thyroid hormone (TH) has diverse effects on mitochondria and energy expenditure (EE), generating great interest and research effort into understanding and harnessing these actions for the amelioration and treatment of metabolic disorders, such as obesity and diabetes. Direct effects on ATP utilization are a result of TH’s actions on metabolic cycles and increased cell membrane ion permeability. However, the majority of TH induced EE is thought to be a result of indirect effects, which, in turn, increase capacity for EE. This review discusses the direct actions of TH on EE, and places special emphasis on the indirect actions of TH, which include mitochondrial biogenesis and reduced metabolic efficiency through mitochondrial uncoupling mechanisms. TH analogs and the metabolic actions of T2 are also discussed in the context of targeted modulation of EE. Finally, clinical correlates of TH actions on metabolism are briefly presented
Simulation of gauge transformations on systems of ultracold atoms
We show that gauge transformations can be simulated on systems of ultracold
atoms. We discuss observables that are invariant under these gauge
transformations and compute them using a tensor network ansatz that escapes the
phase problem. We determine that the Mott-insulator-to-superfluid critical
point is monotonically shifted as the induced magnetic flux increases. This
result is stable against the inclusion of a small amount of entanglement in the
variational ansatz.Comment: 14 pages, 6 figure
Null Deformed Domain Wall
We study null 1/4 BPS deformations of flat domain wall solutions (NDDW) in
N=2, d=5 gauged supergravity with hypermultiplets and vector multiplets
coupled. These are uncharged time-dependent configurations and contain as
special case, 1/2 supersymmetric flat domain walls (DW), as well as 1/2 BPS
null solutions of the ungauged supergravity. Combining our analysis with the
classification method initiated by Gauntlett et al., we prove that all the
possible deformations of the DW have origin in the hypermultiplet sector or/and
are null. Here, we classify all the null deformations: we show that they
naturally organize themselves into "gauging" (v-deformation) and "non gauging"
(u-deformation). They have different properties: only in presence of
v-deformation is the solution supported by a time-dependent scalar potential.
Furthermore we show that the number of possible deformations equals the number
of matter multiplets coupled. We discuss the general procedure for constructing
explicit solutions, stressing the crucial role taken by the integrability
conditions of the scalars as spacetime functions. Two analytical solutions are
presented. Finally, we comment on the holographic applications of the NDDW, in
relation to the recently proposed time-dependent AdS/CFT.Comment: 38 pages; minor changes, references added; text revised, minor
changes, final version published in JHE
Effect of a moderately hypoenergetic Mediterranean diet and exercise program on body cell mass and cardiovascular risk factors in obese women
Objective: To assess the effects of a moderately hypoenergetic Mediterranean diet (MHMD) and exercise program on body cell mass (BCM) and cardiovascular disease risk factors in obese women. Subjects/Methods: Forty-seven obese women, 39.7 +/- 13.2 years of age, with a body mass index (BMI) 30.7 +/- 6.0 kg/m(2), completed the study. The following were measured at baseline, 2 and 4 months: BCM, BCM index (BCMI), body weight, BMI, fat-free mass (FFM), fat mass (FM), total body water (TBW), extracellular water (ECW) and intracellular water (ICW) using bioelectrical impedance analysis; fasting blood glucose (FBG), serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) concentrations; systolic (SBP) and diastolic (DBP) blood pressure. Results: Body weight, BMI, FM, TC and TG significantly decreased (P<0.001; P<0.002 (TG)) at 2 and 4 months. FFM, TBW, ECW, FBG and DBP significantly decreased at 2 months (P<0.05 (FFM); P<0.001). LDL-C significantly decreased (P<0.001), while HDL-C significantly increased (P<0.002) at 4 months. BCM, BCMI, ICW and SBP remained stable over time. Conclusion: BCM was preserved and cardiovascular disease risk factors improved in obese women placed on a MHMD and exercise program for 4 months
Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil
Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics
Noncommutative Electrodynamics
In this paper we define a causal Lorentz covariant noncommutative (NC)
classical Electrodynamics. We obtain an explicit realization of the NC theory
by solving perturbatively the Seiberg-Witten map. The action is polynomial in
the field strenght , allowing to preserve both causality and Lorentz
covariance. The general structure of the Lagrangian is studied, to all orders
in the perturbative expansion in the NC parameter . We show that
monochromatic plane waves are solutions of the equations of motion to all
orders. An iterative method has been developed to solve the equations of motion
and has been applied to the study of the corrections to the superposition law
and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde
Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings
We perform the characterization program for the supersymmetric configurations
and solutions of the , Supergravity Theory coupled to an
arbitrary number of vectors, tensors and hypermultiplets and with general
non-Abelian gaugins. By using the conditions yielded by the characterization
program, new exact supersymmetric solutions are found in the
model for the hyperscalars and with as the gauge group. The
solutions also content non-trivial vector and massive tensor fields, the latter
being charged under the U(1) sector of the gauge group and with selfdual
spatial components. These solutions are black holes with
near horizon geometry in the gauged version of the theory and for the ungauged
case we found naked singularities. We also analyze supersymmetric solutions
with only the scalars of the vector/tensor multiplets and the metric
as the non-trivial fields. We find that only in the null class the scalars
can be non-constant and for the case of constant we refine
the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear
in Class. Quantum Grav. 38 page
- …
