63 research outputs found

    The decline of the charismatic Parnassius mnemosyne (L.) (Lepidoptera: Papilionidae) in a Central Italy national park: a call for urgent actions

    Get PDF
    Here we report the strong decline of a population of the endangered species Parnassius mnemosyne (Linnaeus, 1758) (Lepidoptera: Papilionidae) in the National Park of Foreste Casentinesi, Monte Falterona and Campigna (Italy). We compared historical presence data (before 1969) with current data from two years of monitoring (2018–2019) and provided evidence of a drastic reduction in the number of sites inhabited by the species. A preliminary assessment suggested that the population of P. mmemosyne occurring in the Park is limited to a few individuals. We argue that the population of this iconic and charismatic butterfly is at the verge of extinction in this National Park, probably because of a combination of habitat loss (i.e. decrease in size and number of areas of open grassland on the mountain belt) and climatic changes. Being one of the few populations of P. mnemosyne in the Northern Apennines, the implementation of protection measures is a high conservation priority. Several other butterfly species on the Italian mountains that are facing the same survival challenges would also benefit from the establishment of conservation actions aimed at improving habitat quality for P. mnemosyne. Present article is meant to call for action researchers, stakeholders, and especially decision-makers in order to increase the efforts to upturn the evident decline in abundance of this population

    The decline of the charismatic Parnassius mnemosyne (L.) (Lepidoptera: Papilionidae) in a central italy national park: A call for urgent actions

    Get PDF
    Here we report the strong decline of a population of the endangered species Parnassius mnemosyne (Linnaeus, 1758) (Lepidoptera: Papilionidae) in the National Park of Foreste Casentinesi, Monte Falterona and Campigna (Italy). We compared historical presence data (before 1969) with current data from two years of monitoring (2018–2019) and provided evidence of a drastic reduction in the number of sites inhabited by the species. A preliminary assessment suggested that the population of P. mmemosyne occurring in the Park is limited to a few individuals. We argue that the population of this iconic and charismatic butterfly is at the verge of extinction in this National Park, probably because of a combination of habitat loss (i.e. decrease in size and number of areas of open grassland on the mountain belt) and climatic changes. Being one of the few populations of P. mnemosyne in the Northern Apennines, the implementation of protection measures is a high conservation priority. Several other butterfly species on the Italian mountains that are facing the same survival challenges would also benefit from the establishment of conservation actions aimed at improving habitat quality for P. mnemosyne. Present article is meant to call for action researchers, stakeholders, and especially decision-makers in order to increase the efforts to upturn the evident decline in abundance of this population

    Ants modulate stridulatory signals depending on the behavioural context

    Get PDF
    Insect societies require an effective communication system to coordinate members’ activities. Although eusocial species primarily use chemical communication to convey information to conspecifics, there is increasing evidence suggesting that vibroacoustic communication plays a significant role in the behavioural contexts of colony life. In this study, we sought to determine whether stridulation can convey information in ant societies. We tested three main hypotheses using the Mediterranean ant Crematogaster scutellaris: (i) stridulation informs about the emitter’caste; (ii) workers can modulate stridulation based on specific needs, such as communicating the profitability of a food resource, or (iii) behavioural contexts. We recorded the stridulations of individuals from the three castes, restrained on a substrate, and the signals emitted by foragers workers feeding on honey drops of various sizes. Signals emitted by workers and sexuates were quantitatively and qualitatively distinct as was stridulation emitted by workers on different honey drops. Comparing across the experimental setups, we demonstrated that signals emitted in different contexts (restraining vs feeding) differed in emission patterns as well as certain parameters (dominant frequency, amplitude, duration of chirp). Our findings suggest that vibrational signaling represents a flexible communication channel paralleling the well-known chemical communication system

    Salt-Induced Deterioration on FRP-Brick Masonry Bond

    Get PDF
    In the past decades, several studies have shown how fiber reinforced polymer (FRP) composites are an effective technique to strengthen unreinforced brick masonry structures. However, very little is known about their durability against environmental aggression such as salt attack and freeze-thaw cycles, or elevated moisture content. This paper presents an investigation on influence of salt attack on the stress transfer between the FRP composite and the masonry substrate. In fact, it is well known that, in certain conditions, soluble salts crystallize within the pores of materials, leading to crystallization pressures that may overcome their tensile strength. To investigate this effect, FRP-masonry joints were subjected to salt crystallization cycles according to a conditioning procedure designed by the authors. After conditioning, direct shear tests were conducted on the masonry joints to investigate the interfacial bond between the substrate and the composite. Materials characterization was carried out in order correlate the results of the direct shear tests with the salt distribution within the specimens. For comparison, direct shear tests were conducted on FRP-masonry joints that were not subjected to any cycle and therefore used as control

    The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change

    Get PDF
    Climate change is causing shifts in the distribution of many species and populations inhabiting mountain tops are particularly vulnerable to these threats because they are constrained in altitudinal shifts. Apennines are a relatively narrow and low mountain chain located in Southern Europe, which hosts many isolated populations of mountain species. The butterfly Erebia pandrose was recorded for the last time in the Apennines in 1977, on the top of a single massif (Monti della Laga). We confirmed the presence of a small, isolated population of E. pandrose in the Apennines, at a distance of more than 400 km to any other known populations. Then, we examined the cytochrome c oxidase subunit 1 mitochondrial DNA marker of this species across the Palaearctic area and estimated the potential decline over the Alps and the Apennines due to future climatic changes. The Apennine population represents an endemic lineage characterised by eight mutations over the 658 bp analysed (1.2%). In the Alps and Apennines, this species has shifted uphill more than 3 m per year since the end of the 19th century and more than 22 m per year since 1995. Species distribution models suggested that these mountain populations will experience a generalised loss of climatic suitability, which, according to our projections, could lead to the extinction of the Apennine population in a few decades. Erebia pandrose has the potential to become a flagship species for advertising the risk of losing unique fractions of genetic diversity for mountain species
    • …
    corecore