771 research outputs found

    Measurements and optimization of the light yield of a TeO2_2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cherenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. This paper describes the method developed to evaluate the amount of light produced by a crystal of TeO2_2 when hit by a 511 keV photon. The experimental measurements and the results of a detailed simulation of the crystal and the readout system are shown and compared. A light yield of about 52 Cherenkov photons per deposited MeV was measured. The effect of wrapping the crystal with a PTFE layer, with the aim of maximizing the light collection, is also presented

    New experimental limits on the alpha decays of lead isotopes

    Full text link
    For the first time a PbWO4 crystal was grown using ancient Roman lead and it was run as a cryogenic detector. Thanks to the simultaneous and independent read-out of heat and scintillation light, the detector was able to discriminate beta/gamma interactions with respect to alpha particles down to low energies. New more stringent limits on the alpha decays of the lead isotopes are presented. In particular a limit of T_{1/2} > 1.4*10^20 y at a 90% C.L. was evaluated for the alpha decay of 204Pb to 200Hg

    New application of superconductors: high sensitivity cryogenic light detectors

    Get PDF
    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement

    Characterization of the KID-Based Light Detectors of CALDER

    Full text link
    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5×55\times5 cm2^2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV

    Development of a Li2MoO4 scintillating bolometer for low background physics

    Full text link
    We present the performance of a 33 g Li2MoO4 crystal working as a scintillating bolometer. The crystal was tested for more than 400 h in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). This compound shows promising features in the frame of neutron detection, dark matter search (solar axions) and neutrinoless double-beta decay physics. Low temperature scintillating properties were investigated by means of different alpha, beta/gamma and neutron sources, and for the first time the Light Yield for different types of interacting particle is estimated. The detector shows great ability of tagging fast neutron interactions and high intrinsic radiopurity levels (< 90 \muBq/kg for 238-U and < 110 \muBq/kg for 232-Th).Comment: revised versio

    High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Get PDF
    The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. To satisfy the large surface requirement (several cm2^2) KIDs are deposited on an insulating substrate that converts the impinging photons into phonons. A fraction of phonons is absorbed by the KID, producing a signal proportional to the energy of the original photons. The potential of this technique was proved by the CALDER project, that reached a baseline resolution of 154±\pm7 eV RMS by sampling a 2×\times2 cm2^2 Silicon substrate with 4 Aluminum KIDs. In this paper we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82±\pm4 eV by sampling the same substrate with a single Aluminum KID

    First bolometric measurement of the two neutrino double beta decay of 100^{100}Mo with a ZnMoO4_4 crystals array

    Full text link
    The large statistics collected during the operation of a ZnMoO4_4 array, for a total exposure of 1.3 kg \cdot day of 100^{100}Mo, allowed the first bolometric observation of the two neutrino double beta decay of 100^{100}Mo. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of \sim300 keV. The half-life extracted from the data is T1/22ν_{1/2}^{2\nu}= [7.15 ±\pm 0.37 (stat) ±\pm 0.66 (syst)] \cdot 1018^{18} y.Comment: 6 pages, 2 figure, Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    CALDER - Neutrinoless double-beta decay identification in TeO2_2 bolometers with kinetic inductance detectors

    Get PDF
    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2_2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α\alpha radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β\beta signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2_2 bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.Comment: 8 pages, 3 figures, added reference to first result
    corecore