40 research outputs found

    Malten, a new synthetic molecule showing in vitro antiproliferative activity against tumour cells and induction of complex DNA structural alterations

    Get PDF
    Background: Hydroxypyrones represent several classes of molecules known for their high synthetic versatility. This family of molecules shows several interesting pharmaceutical activities and is considered as a promising source of new anti neoplastic compounds. Methods: In the quest to identify new potential anti cancer agents, a new maltol (3-hydroxy-2-methyl-4-pyrone)-derived molecule, named malten (N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,N′-dimethylethylendiamine), has been synthesised and analysed at both biological and molecular levels for its antiproliferative activity in eight tumour cell lines. Results: Malten exposure led to a dose-dependent reduction in cell survival in all the neoplastic models studied. Sublethal concentrations of malten induce profound cell cycle changes, particularly affecting the S and/or G2-M phases, whereas exposure to lethal doses causes the induction of programmed cell death (apopotosis). The molecular response to malten was also investigated in two biological models: JURKAT and U937 cells. It showed the modulation of genes having key roles in cell cycle progression and apoptosis. Finally, as part of the effort to clarify the action mechanism, we showed that malten is able to impair DNA electrophoretic mobility and drastically reduce both PCR amplificability and fragmentation susceptibility of DNA. Conclusion: Taken together, these results show that malten may exert its antiproliferative activity through the induction of complex DNA structural modifications. This evidence, together with the high synthetic versatility of maltol-derived compounds, makes malten an interesting molecular scaffold for the future design of new potential anticancer agents

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons.

    Get PDF
    An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes.In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1Ăź cytokine into the mature interleukin-1Ăź.Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required.Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons

    Get PDF

    Differentiation response of acute promyelocytic leukemia cells and PML/RAR alpha leukemogenic activity studies by real-time RT-PCR

    No full text
    Acute promyelocytic leukemia (APL) is a human cancer generated by a chromosomal translocation t(15; 17) involving the promyelocytic leukemia (PML) and retinoic acid receptor alpha (RAR alpha) genes. The PML/RAR alpha oncoprotein expressing blasts show two of the most important biological features of neoplastic progression: block of differentiation, at the promyelocytic state, and increased survival. Although PML/ RAR alpha. interferes with the normal maturation of myeloid precursors to granulocytes, pharmacological doses of retinoic acid are sufficient to restore the differentiation processes. We designed an assay based on the Real-Time reverse transcriptase polymerase chain reaction (RT-PCR) to experimentally follow the differentiation response of leukemic cells even after short-time differentiating treatments. Amplifying CD11b, CD11c, and CD14 mRNAs, as specific markers of differentiation, by the real-time RT-PCR assay we could detect both retinoic acid (RA) and vitamin D-3 and human transforming growth factor beta(1) (VitD(3)/TGF beta(1)) induced cellular maturation more precociously than the canonical flow-cytofluorimetric assay. Moreover, by amplifying CD14 mRNA it was possible to monitor the ability of PML/RARa oncoprotein to block VitD(3)/TGF beta(1) induced differentiation in U937-PR9 promonocytic inducible model systems. The proposed real-time quantitative RT-PCR approach is a reproducible and highly sensitive assay and can be considered a valid method to study both cellular maturation state and differentiation response

    In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos

    No full text
    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL

    Differentiation response of Acute Promyelocytic Leukemia (APL) cells and PML/RARalpha leukemogenic activity studies by Real-Time RT-PCR

    No full text
    Acute promyelocytic leukemia (APL) is a human cancer generated by a chromosomal translocation t(15;17) involving the promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARalpha) genes. The PML/RARalpha oncoprotein expressing blasts show two of the most important biological features of neoplastic progression: block of differentiation, at the promyelocytic state, and increased survival. Although PML/RARalpha interferes with the normal maturation of myeloid precursors to granulocytes, pharmacological doses of retinoic acid are sufficient to restore the differentiation processes. We designed an assay based on the Real-Time reverse transcriptase polymerase chain reaction (RT-PCR) to experimentally follow the differentiation response of leukemic cells even after short-time differentiating treatments. Amplifying CD11b, CD11c, and CD14 mRNAs, as specific markers of differentiation, by the real-time RT-PCR assay we could detect both retinoic acid (RA) and vitamin D3 and human transforming growth factor beta1 (VitD3/TGFbeta1) induced cellular maturation more precociously than the canonical flow-cytofluorimetric assay. Moreover, by amplifying CD14 mRNA it was possible to monitor the ability of PML/RARalpha oncoprotein to block VitD3/TGFbeta1 induced differentiation in U937-PR9 promonocytic inducible model systems.The proposed real-time quantitative RT-PCR approach is a reproducible and highly sensitive assay and can be considered a valid method to study both cellular maturation state and differentiation response
    corecore