223 research outputs found

    Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    Get PDF
    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression. To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and three-dimensional cultures of MCF-10â–‘A cells. We show that upon Dbl expression MCF-10â–‘A cells undergo EMT. In addition, we found that Dbl overexpression sustain

    Partitioning Interpolant-Based Verificationfor effective Unbounded Model Checking

    Get PDF
    Interpolant-based model checking has been shown to be effective on large verification instances, as it efficiently combines automated abstraction and reachability fixed-point checks. On the other hand, methods based on variable quantification have proved their ability to remove free inputs, thus projecting the search space over state variables. In this paper we propose an integrated approach which combines the abstraction power of interpolation with techniques that rely on AIG and/or BDD representations of states, directly supporting variable quantification and fixed-point checks. The underlying idea of this combination is to adopt AIG- or BDD-based quantifications to limit and restrict the search space and the complexity of the interpolant-based approach. The exploited strategies, most of which are individually well-known, are integrated with a new flavor, specifically designed to improve their effectiveness on difficult verification instances. Experimental results, specifically oriented to hard-to-solve verification problems, show the robustness of our approach

    SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue

    Get PDF
    The prevalence and clinical relevance of SNIP/p140Cap has not been extensively investigated. Here SNIP/p140Cap mRNA expression was studied in 103 breast tumour biopsies, where it was detected in ∼37% of tumour specimens, but not in any normal breast specimens. Expression correlated significantly with unfavourable overall survival. This suggests that SNIP/p140Cap may be a useful diagnostic and prognostic marker for breast cancer and its expression in breast cancer, but not in normal breast tissue, suggests that it may have potential as a therapeutic target

    p130Cas is an essential transducer element in ErbB2 transformation

    Get PDF
    The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2-dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202-1A cells), and by its reexpression in ErbB2-transformed p130Cas-null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2-dependent foci formation, anchorage-independent growth, and in vivo growth of orthotopic N202-1A tumors. Moreover, intranipple injection of p130Cas-stabilized siRNAs in the mammary gland of Balbc-NeuT mice decreases the growth of spontaneous tumors. In ErbB2-transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c-Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202-1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.-Cabodi, S., Tinnirello, A., Bisaro, B., Tornillo, G., Camacho-Leal, M. P., Forni, G., Cojoca, R., Iezzi, M., Amici, A., Montani, M., Eva, A., Di Stefano, P., Muthuswamy, S. K., Tarone, G., Turco, E., Defilippi, P. p130Cas is an essential transducer element in ErbB2 transformation

    Proteasome inhibition, the pursuit of new cancer therapeutics, and the adaptor molecule p130Cas

    Get PDF
    Current interest in proteasome inhibitors for cancer therapy has stimulated considerable research efforts to identify the molecular pathway to their cytotoxicity with a view to identifying the mechanisms of sensitivity and resistance as well as informing the development of new drugs. Zhao and Vuori describe this month in BMC Biology experiments indicating a novel role of the adaptor protein p130Cas in sensitivity to apoptosis induced not only by proteasome inhibitors but also by the unrelated drug doxorubicin

    Automated NMR relaxation dispersion data analysis using NESSY

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins are dynamic molecules with motions ranging from picoseconds to longer than seconds. Many protein functions, however, appear to occur on the micro to millisecond timescale and therefore there has been intense research of the importance of these motions in catalysis and molecular interactions. Nuclear Magnetic Resonance (NMR) relaxation dispersion experiments are used to measure motion of discrete nuclei within the micro to millisecond timescale. Information about conformational/chemical exchange, populations of exchanging states and chemical shift differences are extracted from these experiments. To ensure these parameters are correctly extracted, accurate and careful analysis of these experiments is necessary.</p> <p>Results</p> <p>The software introduced in this article is designed for the automatic analysis of relaxation dispersion data and the extraction of the parameters mentioned above. It is written in Python for multi platform use and highest performance. Experimental data can be fitted to different models using the Levenberg-Marquardt minimization algorithm and different statistical tests can be used to select the best model. To demonstrate the functionality of this program, synthetic data as well as NMR data were analyzed. Analysis of these data including the generation of plots and color coded structures can be performed with minimal user intervention and using standard procedures that are included in the program.</p> <p>Conclusions</p> <p>NESSY is easy to use open source software to analyze NMR relaxation data. The robustness and standard procedures are demonstrated in this article.</p
    • …
    corecore