20 research outputs found

    Investigation of various Mg(x)Fe(1−x)2O4 (x = 0.1, 0.5 and 0.9) nanostructures as a resistive and flexible LPG sensor

    No full text
    This report talks in detail about the successful synthesis of nanoparticle material Mg(x)Fe(1−x)2O4 (x = 0.1, 0.5 and 0.9) through a simple and inexpensive sol-gel auto-combustion process and its application as a gas sensor. A detailed description of the dependence of liquefied petroleum gas (LPG) sensing performance on the various compositional ratios of Mg(x)Fe(1−x)2O4 (x = 0.1, 0.5 and 0.9) have been investigated. The device was prepared by drop-drying method on lithographic patterned flexible interdigitated electrodes (IDEs). The characterizations revealed that at the specific composition of Mg(x)Fe(1−x)2O4 (x = 0.5), the prepared material performed with supreme sensitivity at 90 °C with respect to the commercially existing gas sensors for 500 ppm of LPG at applied voltage 1 V. Additionally, this device reproduced the similar response in bending test also. The sensor has exhibited related stability even after few days and maintained the stability quite well for several cycles.This publication was partially made possible by the NPRP grant # NPRP11S-1221-170116 from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    corecore