348 research outputs found

    Particle decays and stability on the de Sitter universe

    Full text link
    We study particle decay in de Sitter space-time as given by first order perturbation theory in a Lagrangian interacting quantum field theory. We study in detail the adiabatic limit of the perturbative amplitude and compute the "phase space" coefficient exactly in the case of two equal particles produced in the disintegration. We show that for fields with masses above a critical mass mcm_c there is no such thing as particle stability, so that decays forbidden in flat space-time do occur here. The lifetime of such a particle also turns out to be independent of its velocity when that lifetime is comparable with de Sitter radius. Particles with mass lower than critical have a completely different behavior: the masses of their decay products must obey quantification rules, and their lifetime is zero.Comment: Latex, 38 pages, 1 PostScript figure; added references, minor corrections and remark

    Discrete Symmetries for Spinor Field in de Sitter Space

    Full text link
    Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e. in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed.Comment: 13 pages, LaTeX; appendices adde

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2

    Massless scalar field in two-dimensional de Sitter universe

    Full text link
    We study the massless minimally coupled scalar field on a two--dimensional de Sitter space-time in the setting of axiomatic quantum field theory. We construct the invariant Wightman distribution obtained as the renormalized zero--mass limit of the massive one. Insisting on gauge invariance of the model we construct a vacuum state and a Hilbert space of physical states which are invariant under the action of the whole de Sitter group. We also present the integral expression of the conserved charge which generates the gauge invariance and propose a definition of dual field.Comment: 13 page

    Braid group statistics implies scattering in three-dimensional local quantum physics

    Full text link
    It is shown that particles with braid group statistics (Plektons) in three-dimensional space-time cannot be free, in a quite elementary sense: They must exhibit elastic two-particle scattering into every solid angle, and at every energy. This also implies that for such particles there cannot be any operators localized in wedge regions which create only single particle states from the vacuum and which are well-behaved under the space-time translations (so-called temperate polarization-free generators). These results considerably strengthen an earlier "NoGo-theorem for 'free' relativistic Anyons". As a by-product we extend a fact which is well-known in quantum field theory to the case of topological charges (i.e., charges localized in space-like cones) in d>3, namely: If there is no elastic two-particle scattering into some arbitrarily small open solid angle element, then the 2-particle S-matrix is trivial.Comment: 25 pages, 4 figures. Comment on model-building added in the introductio

    Universality of low-energy scattering in (2+1) dimensions

    Get PDF
    We prove that, in (2+1) dimensions, the S-wave phase shift, ÎŽ0(k) \delta_0(k), k being the c.m. momentum, vanishes as either ÎŽ0→cln⁥(k/m)orÎŽ0→O(k2)\delta_0 \to {c\over \ln (k/m)} or \delta_0 \to O(k^2) as k→0k\to 0. The constant cc is universal and c=π/2c=\pi/2. This result is established first in the framework of the Schr\"odinger equation for a large class of potentials, second for a massive field theory from proved analyticity and unitarity, and, finally, we look at perturbation theory in ϕ34\phi_3^4 and study its relation to our non-perturbative result. The remarkable fact here is that in n-th order the perturbative amplitude diverges like (ln⁥k)n(\ln k)^n as k→0k\to 0, while the full amplitude vanishes as (ln⁥k)−1(\ln k)^{-1}. We show how these two facts can be reconciled.Comment: 23 pages, Late

    De Sitter Waves and the Zero Curvature Limit

    Full text link
    We show that a particular set of global modes for the massive de Sitter scalar field (the de Sitter waves) allows to manage the group representations and the Fourier transform in the flat (Minkowskian) limit. This is in opposition to the usual acceptance based on a previous result, suggesting the appearance of negative energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, has to be preferred as far as one wishes to recover ordinary QFT in the flat limit.Comment: 9 pages, latex no figure, to appear in Phys. Rev.

    Conformally invariant wave-equations and massless fields in de Sitter spacetime

    Full text link
    Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in the present paper. Solutions of their wave equations and the related two-point functions, in the ambient space notation, have been calculated. The ``Hilbert'' space structure and the field operator, in terms of coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based on the analyticity in the complexified pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits of these functions are analyzed. The relation between the ambient space notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde

    N=1 de Sitter Supersymmetry Algebra

    Full text link
    Recalling the universal covering group of de Sitter, the transformation properties of the spinor fields ψ(x)\psi(x) and ψˉ(x){\bar\psi}(x), in the ambient space notation, are presented in this paper. The charge conjugation symmetry of the de Sitter spinor field is then discussed in the above notation. Using this spinor field and charge conjugation, de Sitter supersymmetry algebra in the ambient space notation has been established. It is shown that a novel dS-superalgebra can be attained by the use of spinor field and charge conjugation in the ambient space notation.Comment: 8 pages, LaTeX, some details adde

    The Quest for Understanding in Relativistic Quantum Physics

    Full text link
    We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of Mathematical Physics, 38 pages, typos corrected and references added, as to appear in JM
    • 

    corecore