2,366 research outputs found

    A human performance modelling approach to intelligent decision support systems

    Get PDF
    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs

    Screened Coulomb interaction in the maximally localized Wannier basis

    Full text link
    We discuss a maximally localized Wannier function approach for constructing lattice models from first-principles electronic structure calculations, where the effective Coulomb interactions are calculated in the constrained random-phase-approximation. The method is applied to the 3d transition metals and a perovskite (SrVO_3). We also optimize the Wannier functions by unitary transformation so that U is maximized. Such Wannier functions unexpectedly turned out to be very close to the maximally localized ones.Comment: 22 pages, 6 figure

    Tuning the electrical conductivity of nanotube-encapsulated metallocene wires

    Full text link
    We analyze a new family of carbon nanotube-based molecular wires, formed by encapsulating metallocene molecules inside the nanotubes. Our simulations, that are based on a combination of non-equilibrium Green function techniques and density functional theory, indicate that these wires can be engineered to exhibit desirable magnetotransport effects for use in spintronics devices. The proposed structures should also be resilient to room-temperature fluctuations, and are expected to have a high yield.Comment: 4 pages, 6 figures. Accepted in Physical Review Letter

    Solving the brachistochrone and other variational problems with soap films

    Full text link
    We show a method to solve the problem of the brachistochrone as well as other variational problems with the help of the soap films that are formed between two suitable surfaces. We also show the interesting connection between some variational problems of dynamics, statics, optics, and elasticity.Comment: 16 pages, 11 figures. This article, except for a small correction, has been submitted to the American Journal of Physic

    A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

    Full text link
    The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)]. This approach circumvents the a posteriori application of the Wannier transformation to Bloch functions. I give a novel and rigorous derivation of the relevant equations by introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The properties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified equations offer a different route to maximally localized Wannier functions. Their computational solution is found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of density-functional theory.Comment: 7 pages, RevTeX4, revise

    New representation of orbital motion with arbitrary angular momenta

    Full text link
    A new formulation is presented for a variational calculation of NN-body systems on a correlated Gaussian basis with arbitrary angular momenta. The rotational motion of the system is described with a single spherical harmonic of the total angular momentum LL, and thereby needs no explicit coupling of partial waves between particles. A simple generating function for the correlated Gaussian is exploited to derive the matrix elements. The formulation is applied to various Coulomb three-body systems such as e−e−e+,ttμ,tdμe^-e^-e^+, tt\mu, td\mu, and αe−e−\alpha e^-e^- up to L=4L=4 in order to show its usefulness and versatility. A stochastic selection of the basis functions gives good results for various angular momentum states.Comment: Revte
    • …
    corecore