93 research outputs found

    Periprocedural safety of saccular aneurysm embolization with the Penumbra SMART Coil System: a SMART registry subset analysis

    Get PDF
    Background Using data from the SMART registry, we report on periprocedural safety of the Penumbra SMART Coil System for endovascular coil embolization of saccular intracranial aneurysms. Methods The SMART registry was a prospective, multi-center registry of site standard of care endovascular coiling procedures performed using at least 75% Penumbra SMART Coil, PC400, and/or POD coils. This subset analysis reports on the periprocedural safety outcomes of the saccular intracranial aneurysm cohort. Predictors of rupture/re-rupture or perforation (RRP), thromboembolic complications, and device- or procedure-related adverse events (AEs) were determined in univariate and multivariate analysis. Results Between June 2016 and August 2018, 851 saccular aneurysm patients (31.0%, 264/851 ruptured) were enrolled across 66 North American centers. Clinically significant (ie, a serious adverse event) RRP occurred in 2.0% (17/851) of cases – 1.9% (5/264) for the ruptured cohort and 2.0% (12/587) for the un-ruptured cohort. Clinically significant thromboembolic events occurred in 3.1% (26/851) of cases – 5.3% (14/264) for the ruptured cohort and 2.0% (12/587) for the un-ruptured cohort. Multivariate predictors of periprocedural RRP were increased packing density and adjunctive treatment with a balloon. For periprocedural thromboembolic events, multivariate predictors were bifurcation location and ruptured status. For device- or procedure-related AEs, multivariate predictors were bifurcation location and adjunctive treatment with stent or balloon. Conclusion The low rates of thromboembolic complications and RRP events demonstrate the adequate safety profile of the SMART Coil System to treat cerebral aneurysms in routine clinical practice

    Pathogen-Mediated Proteolysis of the Cell Death Regulator RIPK1 and the Host Defense Modulator RIPK2 in Human Aortic Endothelial Cells

    Get PDF
    Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders
    corecore