1,066 research outputs found

    Hay Quality Sensory Evaluation Form - Cereal

    Get PDF
    Hay Quality Sensory Evaluation Form – Cerea

    Hay Quality Sensory Evaluation Form - Mixed Cereal/Pea or Vetch

    Get PDF
    Hay Quality Sensory Evaluation Form – Mixed Cereal/Pea or Vetc

    Hay Quality Sensory Evaluation Form - Timothy; Export & Horse

    Get PDF
    Hay Quality Sensory Evaluation Form – Timothy; Export & Hors

    The Isovector Quadrupole-Quadrupole Interaction Used in Shell Model Calculations

    Get PDF
    An interaction χQQ(1+Bτ(1)τ(2))-\chi Q\cdot Q(1+B\vec{\tau}(1)\cdot \vec{\tau}(2)) is used in a shell model calculation for 10Be^{10}Be. Whereas for B=0B=0 the 21+2_1^+ state is two-fold degenerate, introducing a negative BB causes an `isovector' 2+2^+ state to come down to zero energy at B=0.67B=-0.67 and an S=1 L=1S=1~L=1 triplet (J=0+, 1+, 2+J=0^+,~1^+,~2^+) to come down to zero energy at B=0.73B=-0.73. These are undesirable properties, but a large negative BB is apparently needed to fit the energy of the isovector giant quadrupole resonance.Comment: 12 pages, revtex, 2 figures (available on request

    Collective Excitations of (154)Sm nucleus at FEL{gamma}+LHC Collider

    Full text link
    The production of collective excitations of the (154)Sm at FEL{gamma}+LHC collider is investigated. We show that this machine will be a powerful tool for investigation of high energy level excitations.Comment: 6 pages, 1 figure, 4 table

    Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei

    Get PDF
    Important E2E2 contributions to the (e,e)(e,e^{\prime}) cross sections of low-lying orbital M1M1 excitations are found in heavy deformed nuclei, arising from the small energy separation between the two excitations with IπK=2+1I^{\pi}K = 2^+1 and 1+1^+1, respectively. They are studied microscopically in QRPA using DWBA. The accompanying E2E2 response is negligible at small momentum transfer qq but contributes substantially to the cross sections measured at θ=165\theta = 165 ^{\circ} for 0.6<qeff<0.90.6 < q_{\rm eff} < 0.9 fm1^{-1} (40Ei7040 \le E_i \le 70 MeV) and leads to a very good agreement with experiment. The electric response is of longitudinal C2C2 type for θ175\theta \le 175 ^{\circ} but becomes almost purely transverse E2E2 for larger backward angles. The transverse E2E2 response remains comparable with the M1M1 response for qeff>1.2q_{\rm eff} > 1.2 fm1^{-1} (Ei>100E_i > 100 MeV) and even dominant for Ei>200E_i > 200 MeV. This happens even at large backward angles θ>175\theta > 175 ^{\circ}, where the M1M1 dominance is limited to the lower qq region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys Rev

    Constrained Willmore Surfaces

    Full text link
    Constrained Willmore surfaces are conformal immersions of Riemann surfaces that are critical points of the Willmore energy W=H2W=\int H^2 under compactly supported infinitesimal conformal variations. Examples include all constant mean curvature surfaces in space forms. In this paper we investigate more generally the critical points of arbitrary geometric functionals on the space of immersions under the constraint that the admissible variations infinitesimally preserve the conformal structure. Besides constrained Willmore surfaces we discuss in some detail examples of constrained minimal and volume critical surfaces, the critical points of the area and enclosed volume functional under the conformal constraint.Comment: 17 pages, 8 figures; v2: Hopf tori added as an example, minor changes in presentation, numbering changed; v3: new abstract and appendix, several changes in presentatio

    Non-Scissors-Mode Behaviour of Isovector Magnetic Dipole Orbital Transitions Involving Isospin Transfer

    Get PDF
    We study the response of isovector orbital magnetic dipole (IOMD) transitions to the quadrupole-quadrupole (QQQ \cdot Q) interaction, to the isospin-conserving pairing interaction (ICP) and to combinations of both. We find qualitatively different behaviours for transitions in which the final isospin differs from the initial isospin versus cases where the two isospins are the same. For N=ZN=Z even-even nuclei with Jπ=0+,T=0J^{\pi}=0^+, T=0 ground states such as 8Be^8Be and 20Ne^{20}Ne, the summed T=0T=1T=0 \to T=1 IOMD from the ground state to all the J=1,T=1J=1, T=1 states in the 0ω0 \hbar \omega space does not vanish when the QQQ \cdot Q interaction is turned off. The pairing interaction (ICP) alone leads to a finite transition rate. For nuclei with J=0+,T=1J=0^+, T=1 ground states such as 10Be^{10}Be and 22Ne^{22}Ne, the summed T=1T=1T=1 \to T=1 IOMD doesdoes vanish when the QQQ \cdot Q interaction is turned off, as is expected in a good scissors-mode behaviour. However this is not the case for the corresponding sum of the T=1T=2T=1 \to T=2 IOMD transitions. In 22Ne^{22}Ne (but not in 10Be^{10}Be) the sum of the T=1T=2T=1 \to T=2 IOMD transitions is remarkably insensitive to the strengths of both the QQQ \cdot Q and the ICP interactions. In 22Ne^{22}Ne an energy weighted-sum is similarly insensitive. All our calculations were carried out in the 0ω0 \hbar \omega space.Comment: 19 pages (including 5 figures). submitted to Nucl. Phys.
    corecore