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Abstract

We study the response of isovector orbital magnetic dipole (IOMD) tran-

sitions to the quadrupole-quadrupole (Q · Q) interaction, to the isospin-

conserving pairing interaction (ICP) and to combinations of both. We find

qualitatively different behaviours for transitions in which the final isospin dif-

fers from the initial isospin versus cases where the two isospins are the same.

For N = Z even-even nuclei with Jπ = 0+, T = 0 ground states such as

8Be and 20Ne, the summed T = 0 → T = 1 IOMD from the ground state

to all the J = 1, T = 1 states in the 0h̄ω space does not vanish when the

Q · Q interaction is turned off. The pairing interaction (ICP) alone leads to

a finite transition rate. For nuclei with J = 0+, T = 1 ground states such
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as 10Be and 22Ne, the summed T = 1 → T = 1 IOMD does vanish when

the Q · Q interaction is turned off, as is expected in a good scissors-mode

behaviour. However this is not the case for the corresponding sum of the

T = 1 → T = 2 IOMD transitions. In 22Ne (but not in 10Be) the sum of the

T = 1 → T = 2 IOMD transitions is remarkably insensitive to the strengths

of both the Q ·Q and the ICP interactions. In 22Ne an energy weighted-sum

is similarly insensitive. All our calculations were carried out in the 0h̄ω space.

I. INTRODUCTION

The scissors mode excitation in an even-even nucleus with a J = 0+ ground state is a

state with quantum numbers J = 1+ arising from the operator ~Lπ −~Lν acting on the ground

state. Here ~L is the orbital angular momentum and ~Lπ − ~Lν is the isovector orbital angular

momentum operator. Of course one can also get excitations from the isovector spin-operator

~Sπ − ~Sν as well, but in this work we focus mainly on orbital excitations.

The collective aspect of this excitation mode was emphasized as early as 1978 by N. Lo

Iudice and F. Palumbo [1], who pictured the scissors mode as a vibration of the deformed

symmetry axis of all the protons against that of all the neutrons. Experimental evidence for

the existence of a scissors mode in 156Gd was obtained by D. Bohle et al. [2] of the Darmstadt

group in 1984. It was soon realized, however, that the initial picture was too extreme and

that mainly only the valence nucleons contributed to the scissors mode excitation, because

one cannot have M1 excitations of any kind in a closed major shell. The IBA treatment of

Iachello [3] does involve only valence bosons and gives more reasonable results. Shell model

approaches also involve valence nucleons, see for instance the early work of Zamick [4] and

that of Chaves and Poves [5].

It was realized that one could connect the isovector orbital strength B(M1) to the nuclear

deformation parameter δ or, alternatively, to the electric quadrupole strength B(E2) in a

given nucleus. For example, Rohoziwski and Greiner [6] have obtained an expression in
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which the B(M1) scissors-mode strength is proportional to δ2. In another approach known

as the “Generalized Coherent State Model”, Raduta et al. have also obtained the same δ2

dependence of the M1 strength [7], see also the works of Hamamoto and Magnusson [8] and

Enders et al. [9].

The connection with deformation has led to the suggestion of using a quadrupole-

quadrupole interaction in shell model calculations which aim to study the scissors mode.

In a previous work by one of the present authors [10], it was shown that with a simple Q ·Q

interaction the summed energy-weighted isovector orbital M1 strength was proportional not

simply to the B(E2) but rather to
∑

B(E2, isoscalar)−∑B(E2, isovector) where the first

term was calculated with the effective nuclear charges ep = 1, en = 1 and the second term

with ep = 1 and en = −1. This expression has the correct behaviour when one of the

major shells of neutrons or protons is closed. In that case, one can have finite B(E2)’s but

vanishing B(M1’s). Indeed, for such a case, the isoscalar and isovector B(E2) sums are the

same and their difference vanishes.

There have also been related calculations which included excitations to higher shells

[11–13]. In Ref. [11] it was noted that in the simple Nilsson model the amount of energy-

weighted strength at 2h̄ω is the same as at 0h̄ω. More detailed calculations with an isovector

Q · Q interaction have also been performed [8].

In this work we shall consider a combination of a Q · Q interaction and an isospin-

conserving pairing interaction. We shall examine light nuclei with a focus on the difference

in behaviour of the transitions in which the final isospin is different from the initial isospin

versus transitions in which the isospin is unchanged. In heavy nuclei with large neutron

excess, such an analysis is not possible at present.

We would argue that if indeed the B(M1) is simply connected to deformation (as is the

case for the scissors states), then the stronger we make the Q · Q strength relative to the

pairing strength the stronger should be the summed isovector orbital B(M1). We will see

in the next sections whether this is what happens in various cases.

One word about the isospin-conserving pairing interaction (ICP). If one limits oneself
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to a pairing interaction involving particles of one kind, then the double commutator of the

isovector orbital angular momentum operator with such a (non-isospin conserving) pairing

interaction will vanish. So if this were the only interaction present, the B(M1) would vanish.

But when we include in the pairing interaction also the J = 0 pairing between a neutron and

a proton, the situation becomes more complicated as will be seen in the following sections.

II. AN OVERVIEW OF THE CALCULATIONS

The two-body interaction that we use in our calculations can be written as the sum of

the Q · Q term and the Isospin-Conserving Pairing Interaction (ICP ) term. The (ICP )

term is defined by:

〈j1j2|Vpairing|j3j4〉J,T = − G
√

1 + δ1,2

√

1 + δ3,4

δJ,0δT,1

√

(2j1 + 1)(2j3 + 1)δj1,j2δj3,j4

whereas the Q · Q interaction is −χ
∑

i<j Q(i) · Q(j) = −χ
∑

i<j r2
i Y2(i) · r2

jY2(j).

Here G and χ are the respective strengths of these two interactions.

We carry out calculations with a hamiltonian that involves a kinetic energy and harmonic

oscillator single-particle terms plus the Q · Q and ICP two-body interaction terms. These

calculations are carried out in the 0h̄ω space using the computer code OXBASH [14].

We consider the four nuclei 8Be, 10Be, 20Ne and 22Ne. For each nucleus we calculate

the summed isovector orbital transition strength B(M1) from the ground state to all the

J = 1+ states with a given T in our 0h̄ωspace. For the N = Z nuclei 8Be and 20Ne, we

sum the T = 0 → T = 1 isovector orbital M1 excitations from the J = 0+, T = 0 ground

state to all the J = 1+, T = 1 states in the 0h̄ω space. For 10Be and 22Ne, we can have

both T = 1 → T = 1 and T = 1 → T = 2 transitions from the J = 0+, T = 1 ground

state to 1+ states, and we sum their strengths separately.

In table I we give the values of the summed isovector orbital M1 strengths in the extreme

limits of a pure Q · Q (G = 0) and a pure ICP (χ = 0) interaction separately.

Note that, in Figs. 1-4, the G = 0 results are those at the extreme left of each figure
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while the χ = 0 values are the asymptotic values of the curves at the extreme right of each

figure and beyond.

III. RESULTS OF THE CALCULATIONS

A. A Brief Discussion of Isoscalar Transitions

For all combinations of the different strenghts of the Q · Q and ICP interactions, the

summed isoscalar orbital transitions vanish in all nuclei. This is true for T = 0 → T = 0

and T = 0 → T = 1 transitions in 8Be and 20Ne, and it is also true for T = 1 → T = 1

and T = 1 → T = 2 transitions in 10Be and 22Ne.

B. Isovector Transitions in 8Be and 20Ne with T = 0 ground states

The N = Z nuclei 8Be and 20Ne have T = 0 ground-state isospins, and isovector

transitions from such a state will therefore lead only to T = 1 excited states. In Figs. 1

and 2, we show the results of calculations of the isovector orbital summed M1 strengths

as a function of the parameter R = G/18χ̄ where χ̄ = 5b4

32π
χ. In the SU(3) model, the

excitation energy of the 2+
1 state is Ex(2

+
1 ) = 18χ̄. Hence the ratio G/18χ̄ is a dimensionless

parameter which tells us how the strength of the ICP interaction relates to an SU(3)-model

estimate of Ex(2
+
1 ). The limiting case where the Q · Q interaction is turned off corresponds

to R = G/18χ̄ going to infinity, while for the pure Q ·Q case R = G/18χ̄ is zero. Essentially,

our parameter R = G/18χ̄ is proportional to the ratio of the relative strengths of the ICP

and Q · Q interactions.

Examining Figs. 1 and 2 for 8Be and 20Ne, respectively, we see that as we move right-

wards from R = 0 the summed isovector orbital magnetic dipole strength starts to go down

approximately linearly from an initially large value (for R = 0). But then this summed

B(M1) levels off and reaches a non−zero asymptotic value. This tells us that as we add an

ICP interaction to what was originally a pure Q ·Q interaction the summed isovector orbital
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magnetic dipole strength decreases. At the other extreme, for large R we get a non-zero

value of this M1 strength. In other words, if we just have an ICP interaction we get a finite

summed isovector orbital strength from T = 0 to T = 1. This is a non-scissors-mode contri-

bution and as such is a new mode of excitation. However, the addition of a Q ·Q interaction

to an ICP interaction does lead to an enhancement of the isovector orbital strength, and a

scissors-mode contribution is present in that case as well.

C. Isovector Transitions in Nuclei with T = 1 Ground States, 10Be and 22Ne

For nuclei with T = 1 ground states, such as 10Be and 22Ne, we consider separately the

summed isovector orbital T = 1 → T = 1 transitions and T = 1 → T = 2 transitions,

see Figs. 3 and 4.

For the T = 1 to T = 1 transitions, the summed isovector orbital magnetic dipole

strength vanishes in the limiting case of a vanishing Q · Q interaction (corresponding to

R going to infinity). This vanishing for a pure ICP interaction is shown analytically in

Appendix A. This T = 1 → T = 1 mode displays the simple scissors-mode behaviour; for

a fixed strength χ of the Q · Q interaction, the summed isovector orbital magnetic dipole

strength decreases as we increase the ICP strength G. Thus, the pairing interaction serves

to decrease the summed isovector orbital strength.

For T = 1 → T = 2 transitions the behaviour is quite different. In 10Be, as we increase

the parameter R, the summed isovector orbital magnetic dipole strength decreases rapidly

from a large value, but reaches an asymptotic value for large R that is non-zero (see Fig.

3).

For 22Ne, we find that the summed isovector orbital magnetic dipole strength hardly

changes at all as we increase the value of the parameter R, and the value of the summed

strength always remains very close to unity (see Fig. 4). More specifically the strength is

1.098 for R = 0, decreases to 0.985 for R ≃ 0.4 and then increases to 1.174 for R → ∞.

Thus the summed transition strength is rather insensitive to what we choose as the strength
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parameters of the Q · Q and ICP interactions, provided of course that we do not change

their overall signs. We can call these newly studied isovector orbital M1 excitations of the

Jπ = 1+ T = 2 states in 22Ne the insensitive modes.

D. The energy-weighted B(M1) sums in 22Ne

In 22Ne, it is interesting to study also two energy-weighted isovector orbital B(M1)

sums. If we consider an initial state i and many final states f , the energy-weighted B(M1)

sum (EWS) is then defined as EWS ≡ ∑

f (Ei − Ef)B(M1 : i → f).

One energy-weighted isovector orbital B(M1) sum is A ≡ (EWS)T=1→T=1, which

considers all the isovector orbital M1 transitions from the 0+
1 , T = 1 ground state to

all the 1+, T = 1 states in our 0h̄ω model space. The other energy-weighted sum is

B ≡ (EWS)T=1→T=2 which considers all the isovector orbital M1 transitions from the

0+
1 , T = 1 ground state to all the 1+, T = 2 states in our model space. For a given value of

χ̄, we studied the behaviour of the quantities A, B, and A + B as a function of our usual

parameter R = G
18χ̄

. The results are plotted in Fig. 5 for R ranging from 0 to 1. Three

curves are drawn there corresponding respectively to A, B and A + B.

From Fig. 5, it is clear that for 0 < R < 1 the sum A + B is insensitive to R. This sum

varies in this region only by 13% although A and B individually decrease respectively, by

close to a factor of three in each case. Note that in Fig. 5 we used a single value of χ̄ (with

χ̄ ≃ 0.1), and we varied R by simply varying G. However, we have found that the quantity

(A + B)/χ̄ still remains insensitive to R as we vary both G and χ̄ independently.

IV. CONCLUSION

In this paper we have reported on the results of a comparative shell-model study of

Isovector Orbital Magnetic Dipole Transitions (IOMD) in light even-even nuclei using a

combination of a quadrupole-quadrupole (Q·Q) interaction and an isospin-conserving pairing

(ICP) interaction. We have found that the IOMD transitions involving ∆T = 1 states have
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a non-scissors mode behaviour in the sense that the IOMD strength remains finite even for

a vanishing deformation-inducing interaction such as Q · Q. Comparing the results for the

extreme situations of χ = 0 and G = 0 (absence of the Q · Q interaction, and absence of

the ICP interaction, respectively), one notices that the contribution of the Q ·Q interaction

prevails over that of the ICP one. An exception is the case of 22Ne where the contribution of

ICP is slightly larger than that of Q ·Q. Since this case reveals quite unexpected properties,

we refer to the corresponding mode as a new mode. In this mode, the isovector orbital

M1 excitation from T = 1 to T = 2 is relatively insensitive to the strength of the Q · Q

and/or that of the pairing interaction. Furthermore, the summed energy-weighted isovector

orbital B(M1), when added for both T = 1 → T = 1 and T = 1 → T = 2 is again

quite insensitive to the ratio of the isospin-conserving pairing interaction strength to the

quadrupole-quadrupole interaction strength.
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VI. APPENDIX A

In this Appendix we show that in nuclei like 10Be and 22Ne, with a pure T = 1, isospin-

conserving pairing interaction, the isovector orbital B(M1) excitation connects the 0+, T = 1

ground state only to states with L = 1, S = 0, T = 2.

For such an interaction the ground state for the 4ν ⊕ 2π nuclei in a given (degenerate)

major N−shell (i.e., N = 1 for 10Be, N = 2 for 22Ne) will be of the general form

|GS〉 = A
{

S(ππ)1
0 ⊗ (νν)1

0 ⊗ (νν)1
0

}1

0
+ B

{

S(νπ)1
0 ⊗ (νπ)1

0 ⊗ (νν)1
0

}1

0
(1)

where the upper labels stand for isospin and the lower labels are for angular momentum

(j = 0, ℓ = 0, s = 0, for each pair in the ground state). S indicates symmetrized product of

pairs.

To use a shorter notation (since they are all s = 0, ℓ = 0 pairs), we write only the t, tz of

the pairs. We write

(ππ) = A1−1; (νν) = A11; (πν)1
0 = A10; (πν)0

1 = Ã00 (2)

where the super index indicates isospin labels (At,tz).

It is easy to show that ~Lπ − ~Lν (and likewise ~Sπ − ~Sν and ~Jπ − ~Jν) acting on the first

component (∝ A) gives zero because

(

~Lπ − ~Lν

)

∣

∣

∣

∣

{

S
(

A1−1 ⊗A11 ⊗A11
)11

00

}〉

=

∣

∣

∣

∣

{

S
[((

~ℓ(1)
π + ~ℓ(2)

π

)

A1−1
)

⊗A11 ⊗A11
]}T1

00

〉

−
∣

∣

∣S
[

A1−1 ⊗
((

~ℓ(1)
ν + ~ℓ(2)

ν

)

A11
)

⊗A11
]〉

+ · · · (3)

and

(

~ℓ(1)
π + ~ℓ(2)

π

)

A1−1 = 0 (4)

(

~ℓ(1)
ν + ~ℓ(2)

ν

)

A11 = 0 (5)

i.e., (ππ)1
0 is an eigenstate of ~ℓ(1)

π + ~ℓ(2)
π ≡ ~ℓ12 with eigenvalue ℓ12 = 0.

Similarly it is a simple matter to show that ~ℓ(1)
π −~ℓ(2)

ν acting on a πν pair with T = 1, L =

0, S = 0 transforms this pair into one with T = 0, L = 1, S = 0 (likewise ~S(1)
π −~S(2)

π transforms
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it into one with T = 0, L = 0, S = 1). Therefore we can write that (~ℓ(1)
π − ~ℓ(2)

ν )A10 = CÃ 00,

where Ã00 has L = 1, S = 0, and that

(

~Lπ − ~Lν

)

|GS〉 = B
(

~Lπ − ~Lν

)

{

[

S
(

A10 ⊗A10 ⊗A11
)]11

00

}

(6)

Let us first see what the term [S (A10 ⊗A10 ⊗A11)]
1
0 looks like:

S
(

A10 ⊗A10 ⊗A11
)

=
1

N
{

A10 ⊗A10 ⊗A 11 + A10 ⊗A11 ⊗A10 + A11 ⊗A10 ⊗A10
}11

00

=
1

2N {
∑

T

{

A10 ⊗
[

A10 ⊗A11
]T1
}11

+
{

[

A10 ⊗A10
]T0 ⊗A11

}11

+
{

[

A10 ⊗A11
]T1 ⊗A10

}11

+
{

A10 ⊗
[

A11 ⊗A10
]T1
}11

+
{

A11 ⊗
[

A10 ⊗A10
]T0
}11

+
{

[

A11 ⊗A10
]T1 ⊗A10

}11

} (7)

Now we use

∑

T

[

A10 ⊗A11
]T1

=
∑

T=1,2

〈1011|T1〉A10A11

∑

T

[

A11 ⊗A10
]T1

=
∑

T=1,2

(−1)T 〈1011|T1〉A11A10

∑

T

[

A10 ⊗A10
]T0

=
∑

T=0,2

〈1010|T0〉A10A10

{

A10 ⊗
[

A10 ⊗A11
]T1
}11

=
∑

T=1,2

〈10T1|11〉 〈1011|T1〉A10A10A11 (8)

... (9)

to write

{

S
(

A10 ⊗A10 ⊗A11
)}1

1
=

1

N







∑

T=1,2

〈1011|T1〉 〈10T1|11〉
[

A10A10A11 + (−1)T 2A10A11A10 + A11A10 A10
]

+
∑

T ′=0,2

〈1010|T ′0〉 〈T ′011|11〉
[

A10A10A1 1 + (−1)T ′A11A10A10
]







(10)

Now we have that

(

~Lπ − ~Lν

)

A10A10A11 =
[(

~ℓ(1)
π − ~ℓ(2)

ν

)

A10
]

A10A11 + A10
[(

~ℓ(1)
π − ~ℓ(2)

ν

)

A10
]

A11

= C
[

Ã00A10A11 + A10Ã00A11
]

(11)
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and so on for every component. Now we use the fact that

[

Ã00,A10
]

= 0;
[

Ã00,A11
]

= 0 (12)

and write in all that

(

~Lπ − ~Lν

)

|GS〉 =
1

2N BCÃ00







∑

T=1,2

〈1011|T1〉 〈10T1|11〉

×
[

2A10A11 + (−1)T
(

2A11A10 + 2A10A11
)

+ 2A11A10
]

+
∑

T ′=0,2

〈1010|T ′0〉 〈T ′011|11〉
(

2A10A11 + 2A11A10
)







. (13)

Now we construct from these the total isospin states with T = 1 and T = 2 (there cannot

be T = 0 because Tz = 1).

Since Ã00 has T = 0 and L = 1, while the rest have T = 1 and L = 0, we know that the

total state has L = 1 with a coupling coefficient equal to one and we do not need to worry

about this pair. We find that

(

~Lπ − ~Lν

)

|GS〉 =
1

2N BC

[

4 〈1011|21〉 〈1021|11〉+ 2

(

−1√
3

+ 〈1010|20〉 〈2011|11〉
)]

×
∑

T=1,2

(〈1011|T1〉+ 〈1110|T1〉)
{

S
(

Ã00 ⊗A10 ⊗A11
)}T1

L=1,S=0

=
1

N BC

[

4 〈1011|21〉 〈1021|11〉 + 2

(

−1√
3

+ 〈1010|20〉 〈2011|11〉
)]

×〈1011|21〉 δT2

{

S
(

Ã00 ⊗A10 ⊗A11
)}T1

L=1,S=0
(14)

Then
(

~Lπ − ~Lν

)

|GS〉 is orthogonal to the state with L = 1, S = 0, T 6= 2, Tz = 1.
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TABLES

TABLE I. Values of isovector orbital summed strenghs when G = 0 and when χ = 0

Nucleus Mode G = 0 χ = 0

8Be T = 0 → T = 1 2.547 0.728

10Be T = 1 → T = 1 0.358 0.000

T = 1 → T = 2 0.596 0.218

20Ne T = 0 → T = 1 4.673 2.447

22Ne T = 1 → T = 1 3.659 0.000

T = 1 → T = 2 1.098 1.175
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Figure Captions

Fig. 1: For 8Be, the sum of the isovector orbital B(M1)’s from the J = 0+
1 , T = 0

ground state to all the J = 1+, T = 1 states in the 0h̄ω space. The parameter R, defined in

the text, is proportional to the ratio of the strengths of the Isospin-Conserving Pairing and

Q · Q interactions.

Fig. 2: For 20Ne, the sum of the isovector orbital B(M1)’s from the J = 0+
1 , T = 0

ground state to all the J = 1+, T = 1 states in the 0h̄ω space.

Fig. 3: For 10Be, the separate sums of the T = 1 → T = 1 and the T = 1 → T = 2

isovector orbital B(M1)’s from the J = 0+
1 , T = 1 ground state.

Fig. 4: for 22Ne, the separate sums of the T = 1 → T = 1 and the T = 1 → T = 2

isovector orbital B(M1)’s from the J = 0+
1 , T = 1 ground state.

Fig. 5: For 22Ne, the Energy-Weighted Isovector Orbital B(M1) sums A, B, and A+B

as defined in the text. A + B is insensitive to R.
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