40 research outputs found

    ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production

    Get PDF
    Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (WT, Ace2+/y) and ACE2 knockout (ACE2KO, Ace2−/y) mice received with mini-osmotic pumps with Ang II (1.5 mg.kg−1.d−1) or saline for 2 weeks. Aortic ACE2 protein was obviously reduced in WT mice in response to Ang II related to increases in profilin-1 protein and plasma levels of Ang II and Ang-(1–7). Loss of ACE2 resulted in greater increases in Ang II-induced mRNA expressions of inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and IL-6 without affecting tumor necrosis factor-α in aortas of ACE2KO mice. Furthermore, ACE2 deficiency led to greater increases in Ang II-mediated profilin-1 expression, NADPH oxidase activity, and superoxide and peroxynitrite production in the aortas of ACE2KO mice associated with enhanced phosphorylated levels of Akt, p70S6 kinase, extracellular signal-regulated kinases (ERK1/2) and endothelial nitric oxide synthase (eNOS). Interestingly, daily treatment with AT1 receptor blocker irbesartan (50 mg/kg) significantly prevented Ang II-mediated aortic profilin-1 expression, inflammation, and peroxynitrite production in WT mice with enhanced ACE2 levels and the suppression of the Akt-ERK-eNOS signaling pathways. Our findings reveal that ACE2 deficiency worsens Ang II-mediated aortic inflammation and peroxynitrite production associated with the augmentation of profilin-1 expression and the activation of the Akt-ERK-eNOS signaling, suggesting potential therapeutic approaches by enhancing ACE2 action for patients with vascular diseases

    Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    Get PDF
    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required

    Active and Passive Carbon Fractions in Contrasting Cropping Systems, Tillage Practices, and Soil Types

    No full text
    The rate of change in the relative amount of active and passive carbon (AC and PC) due to the land management practices (cropping systems combined with tillage) may vary with soil types depending on their level of chemical and/or physical protection from the decomposition but has rarely been directly measured. We have quantified the C storage potentiality of different soil types, namely old alluvial Inceptisol of Malda and recent alluvial Entisol of Coochbehar in West Bengal (subtropical eastern India) under the influence of different cropping systems (rice-maize: RM and rice-wheat: RW) and tillage practices (zero-tillage: ZT and conventional tillage: CT). The key objective was to demonstrate the short-term impact of conservation agriculture (CA) on soil C dynamics over the conventional practice. Research revealed that after short-term CA, total organic carbon (TOC), AC, PC, and total nitrogen (TN) showed significant (p < 0.05) improvement under the RM cropping system over the RW. The highest TOC content under the RM cropping system was recorded in the sites of Malda over the Coochbehar sites. The ZT significantly (p < 0.05) enhanced the TOC in the upper layers (0–5 and 5–10 cm) and the CT showed improvements in the lower depths (10–20 cm). We observed some irregular variations in the interactions of the cropping system and tillage with respect to different sites. However, the ZT performed better in improving C fractions under RM and RW as compared to CT. The TOC and TN stocks were maximum in the lower depth which was evident in both soil types. The TOC linearly regressed on TN accounted for 94.2% variability (R2 = 0.942) of the C accumulation in soil and vice-versa. The PC was in a significant relationship with TN (R2 = 0.943), but AC was moderately regressed (R2 = 0.851). Lower stratification ratio values in Coochbehar soils (sandy loam in texture) indicated higher profile distribution of AC and PC in the soil profile; while in the Inceptisol, accumulation of the C fractions on the soil surface due to heavy texture resulted in the higher stratification values. The novelty of this study is that old alluvial Inceptisol showed a comparatively greater amount of AC and PC storage capability in comparison with the new alluvial Entisol. Conclusively, our study demonstrated that the adoption of conservation agriculture (CA practice/ZT) in cropping systems with higher C biomass input would significantly enhance the AC and PC fractions; however, the amount of storage is highly governed by the soil type and climatic factors

    Active and Passive Carbon Fractions in Contrasting Cropping Systems, Tillage Practices, and Soil Types

    No full text
    The rate of change in the relative amount of active and passive carbon (AC and PC) due to the land management practices (cropping systems combined with tillage) may vary with soil types depending on their level of chemical and/or physical protection from the decomposition but has rarely been directly measured. We have quantified the C storage potentiality of different soil types, namely old alluvial Inceptisol of Malda and recent alluvial Entisol of Coochbehar in West Bengal (subtropical eastern India) under the influence of different cropping systems (rice-maize: RM and rice-wheat: RW) and tillage practices (zero-tillage: ZT and conventional tillage: CT). The key objective was to demonstrate the short-term impact of conservation agriculture (CA) on soil C dynamics over the conventional practice. Research revealed that after short-term CA, total organic carbon (TOC), AC, PC, and total nitrogen (TN) showed significant (p p 2 = 0.942) of the C accumulation in soil and vice-versa. The PC was in a significant relationship with TN (R2 = 0.943), but AC was moderately regressed (R2 = 0.851). Lower stratification ratio values in Coochbehar soils (sandy loam in texture) indicated higher profile distribution of AC and PC in the soil profile; while in the Inceptisol, accumulation of the C fractions on the soil surface due to heavy texture resulted in the higher stratification values. The novelty of this study is that old alluvial Inceptisol showed a comparatively greater amount of AC and PC storage capability in comparison with the new alluvial Entisol. Conclusively, our study demonstrated that the adoption of conservation agriculture (CA practice/ZT) in cropping systems with higher C biomass input would significantly enhance the AC and PC fractions; however, the amount of storage is highly governed by the soil type and climatic factors

    Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia

    No full text
    BACKGROUND: Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity and currently lacks efficient treatment. Rat bone marrow-derived mesenchymal stem cells (MSC) prevent lung injury in an oxygen-induced model of BPD. Human cord is an advantageous source of stem cells that is especially appealing for the treatment of neonatal diseases. The therapeutic benefit after established lung injury and long-term safety of cord-derived stem cells is unknown. METHODS: Human cord-derived perivascular cells (PCs) or cord blood-derived MSCs were delivered prophylactically or after established alveolar injury into the airways of newborn rats exposed to hyperoxia, a well-established BPD model. RESULTS: Rat pups exposed to hyperoxia showed the characteristic arrest in alveolar growth with air space enlargement and loss of lung capillaries. PCs and MSCs partially prevented and rescued lung function and structure. Despite therapeutic benefit, cell engraftment was low, suggesting that PCs and MSCs act via a paracrine effect. Accordingly, cell free-derived conditioned media from PCs and MSCs also exerted therapeutic benefit when used either prophylactically or therapeutically. Finally, long-term (6 months) assessment of stem cell or conditioned media therapy showed no adverse lung effects of either strategy, with persistent improvement in exercise capacity and lung structure. CONCLUSIONS: Human umbilical cord-derived PCs and MSCs exert short- and long-term therapeutic benefit without adverse lung effects in this experimental model and offer new therapeutic options for lung diseases characterised by alveolar damage

    Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and In Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer

    No full text
    This work is aimed at investigating the expression levels of inducible nitric oxide synthase (iNOS) in cervical cancer and identifying a potential iNOS inhibitor. The data mining studies performed advocated iNOS to be a promising biomarker for cancer prognosis, as it is highly overexpressed in several malignant cancers. The elevated iNOS was found to be associated with poor survival and increased tumor aggressiveness in cervical cancer. Immunohistochemical and RT-PCR investigations of iNOS showed significant upregulation of endogenous iNOS expression in the cervical tumor samples, thus making iNOS a potent target for decreasing tumor inflammation and aggressiveness. Andrographolide, a plant-derived diterpenoid lactone, is widely reported to be effective against infections and inflammation, causing no adverse side effects on humans. In the current study, we investigated the effect of andrographolide on the prognostic value of iNOS expression in cervical cancer, which has not been reported previously. The binding efficacy of andrographolide was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), torsional degree of freedom, protein-root mean square fluctuations (P-RMSF), ligand RMSF, total number of intramolecular hydrogen bonds, secondary structure elements (SSE) of the protein, and protein complex with the time-dependent functions of MDS. Ligand-protein interactions revealed binding efficacy of andrographolide with tryptophan amino acid of iNOS protein. Cancer cell proliferation, cell migration, cell cycle analysis, and apoptosis-mediated cell death were assessed in vitro, post iNOS inhibition induced by andrographolide treatment (demonstrated by Western blot). Results. Andrographolide exhibited cytotoxicity by inhibiting the in vitro proliferation of cervical cancer cells and also abrogated the cancer cell migration. A significant increase in apoptosis was observed with increasing andrographolide concentration, and it also induced cell cycle arrest at G1-S phase transition. Our results substantiate that andrographolide significantly inhibits iNOS expression and exhibits antiproliferative and proapoptotic effects on cervical cancer cells
    corecore