3,347 research outputs found
Recommended from our members
Investigation of peatland restoration (grip blocking) techniques to achieve best outcomes for methane and greenhouse gas emissions/balance. Controlled Environment (Mesocosm) Experiment. Final Report to Defra. Project code SP1202
Recommended from our members
Plastic Microbial Acclimation and Optimisation of Composting and Anaerobic Digestion Processes may Improve Degradation Times
Nonlinear surface waves in left-handed materials
We study both linear and nonlinear surface waves localized at the interface
separating a left-handed medium (i.e. the medium with both negative dielectric
permittivity and negative magnetic permeability) and a conventional (or
right-handed) dielectric medium. We demonstrate that the interface can support
both TE- and TM-polarized surface waves - surface polaritons, and we study
their properties. We describe the intensity-dependent properties of nonlinear
surface waves in three different cases, i.e. when both the LH and RH media are
nonlinear and when either of the media is nonlinear. In the case when both
media are nonlinear, we find two types of nonlinear surface waves, one with the
maximum amplitude at the interface, and the other one with two humps. In the
case when one medium is nonlinear, only one type of surface wave exists, which
has the maximum electric field at the interface, unlike waves in right-handed
materials where the surface-wave maximum is usually shifted into a
self-focussing nonlinear medium. We discus the possibility of tuning the wave
group velocity in both the linear and nonlinear cases, and show that
group-velocity dispersion, which leads to pulse broadening, can be balanced by
the nonlinearity of the media, so resulting in soliton propagation.Comment: 9 pages, 10 figure
Calculating Nonlocal Optical Properties of Structures with Arbitrary Shape
In a recent Letter [Phys. Rev. Lett. 103, 097403 (2009)], we outlined a
computational method to calculate the optical properties of structures with a
spatially nonlocal dielectric function. In this Article, we detail the full
method, and verify it against analytical results for cylindrical nanowires.
Then, as examples of our method, we calculate the optical properties of Au
nanostructures in one, two, and three dimensions. We first calculate the
transmission, reflection, and absorption spectra of thin films. Because of
their simplicity, these systems demonstrate clearly the longitudinal (or
volume) plasmons characteristic of nonlocal effects, which result in anomalous
absorption and plasmon blueshifting. We then study the optical properties of
spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we
compare the maximum and average electric field enhancements around nanowires of
various shapes to local theory predictions. We demonstrate that when nonlocal
effects are included, significant decreases in such properties can occur.Comment: 30 pages, 12 figures, 1 tabl
The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor
The discontinuous gas exchange (DGE) pattern of respiration shown
by many arthropods includes periods of spiracle closure (C-phase)
and is largely thought to serve as a physiological adaptation to restrict
water loss in terrestrial environments. One major challenge to this
hypothesis is to explain the presence of DGE in insects in moist
environments. Here, we show a novel ecological correlate of the
C-phase, namely, diving behaviour in mesic Paracinema tricolor
grasshoppers. Notably, maximal dive duration is positively correlated
with C-phase length, even after accounting for mass scaling and
absolute metabolic rate. Here, we propose that an additional
advantage of DGE may be conferred by allowing the tracheal
system to act as a sealed underwater oxygen reservoir. Spiracle
closure may facilitate underwater submersion, which, in turn, may
contribute to predator avoidance, the survival of accidental immersion
or periodic flooding and the exploitation of underwater resources
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation
Bryozoan carbonate contains useful geochemical evidence of temperate shelf paleoenvironments. Stable isotope values were determined for 103 modern marine bryozoan skeletons representing 30 species from New Zealand. δ18O values range from -1.4 to 2.8 VPDB, while δ13C range from -4.5 to 2.8 VPDB (values uncorrected for mineralogical variation). These values are distinct from those of both tropical marine skeletons and New Zealand Tertiary fossils. Most bryozoans secrete carbonate in or near isotopic equilibrium with sea water, except for Celleporina and Steginoporella. The complex and variable mineralogies of the bryozoans reported here make correction for mineralogical effects problematic. Nevertheless, mainly aragonitic forms display higher isotope values, as anticipated. Both temperature and salinity constrain δ18O and δ13C values, and vary with latitude and water depth. Ten samples from a single branch of Cinctipora elegans from the Otago shelf cover a narrow range, although the striking difference in carbon isotope values between the endozone and exozone probably reflects different mineralisation histories. Our stable isotope results from three different laboratories on a single population from a single location are encouragingly consistent. Monomineralic bryozoans, when carefully chosen to avoid species suspected of vital fractionation, have considerable potential as geochemical paleoenvironmental indicators, particularly in temperate marine environments where bryozoans are dominant sediment producers
Assessing the number of users who are excluded by domestic heating controls
This is the pre-print version of the Article. This Article is also referred to as: "Assessing the 'Design Exclusion' of Heating Controls at a Low-Cost, Low-Carbon Housing Development". - Copyright @ 2011 Taylor & FrancisSpace heating accounts for almost 60% of the energy delivered to housing which in turn accounts for nearly 27% of the total UK's carbon emissions. This study was conducted to investigate the influence of heating control design on the degree of ‘user exclusion’. This was calculated using the Design Exclusion Calculator, developed by the Engineering Design Centre at the University of Cambridge. To elucidate the capability requirements of the system, a detailed hierarchical task analysis was produced, due to the complexity of the overall task. The Exclusion Calculation found that the current design placed excessive demands upon the capabilities of at least 9.5% of the UK population over 16 years old, particularly in terms of ‘vision’, ‘thinking’ and ‘dexterity’ requirements. This increased to 20.7% for users over 60 years old. The method does not account for the level of numeracy and literacy and so the true exclusion may be higher. Usability testing was conducted to help validate the results which indicated that 66% of users at a low-carbon housing development could not programme their controls as desired. Therefore, more detailed analysis of the cognitive demands placed upon the users is required to understand where problems within the programming process occur. Further research focusing on this cognitive interaction will work towards a solution that may allow users to behave easily in a more sustainable manner
Nonlinear interfaces: intrinsically nonparaxial regimes and effects
The behaviour of optical solitons at planar nonlinear boundaries is a problem rich in intrinsically nonparaxial regimes that cannot be fully addressed by theories based on the nonlinear Schrödinger equation. For instance, large propagation angles are typically involved in external refraction at interfaces. Using a recently proposed generalized Snell's law for Helmholtz solitons, we analyse two such effects: nonlinear external refraction and total internal reflection at interfaces where internal and external refraction, respectively, would be found in the absence of nonlinearity. The solutions obtained from the full numerical integration of the nonlinear Helmholtz equation show excellent agreement with the theoretical predictions
- …
