272 research outputs found

    Testing of typical spacecraft materials in a simulated substorm environment

    Get PDF
    The test specimens were spacecraft paints, silvered Teflon, thermal blankets, and solar array segments. The samples, ranging in size from 300 to 1000 sq cm were exposed to monoenergetic electron energies from 2 to 20 keV at a current density of 1 NA/sq cm. The samples generally behaved as capacitors with strong voltage gradient at their edges. The charging characteristics of the silvered Teflon, Kapton, and solar cell covers were controlled by the secondary emission characteristics. Insulators that did not discharge were the spacecraft paints and the quartz fiber cloth thermal blanket sample. All other samples did experience discharges when the surface voltage reached -8 to -16kV. The discharges were photographed. The breakdown voltage for each sample was determined and the average energy lost in the discharge was computed

    Are current-induced forces conservative?

    Full text link
    The expression for the force on an ion in the presence of current can be derived from first principles without any assumption about its conservative character. However, energy functionals have been constructed that indicate that this force can be written as the derivative of a potential function. On the other hand, there exist compelling specific arguments that strongly suggest the contrary. We propose physical mechanisms that invalidate such arguments and demonstrate their existence with first-principles calculations. While our results do not constitute a formal resolution to the fundamental question of whether current-induced forces are conservative, they represent a substantial step forward in this direction.Comment: 4 pages, 4 Figures, submitted to PR

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography

    Get PDF
    A vital part of biopharmaceutical research is decision making around which lead candidate should be progressed in early-phase development. When multiple antibody candidates show similar biological activity, developability aspects are taken into account to ease the challenges of manufacturing the potential drug candidate. While current strategies for developability assessment mainly focus on drug product stability, only limited information is available on how antibody candidates with minimal differences in their primary structure behave during downstream processing. With increasing time-to-market pressure and an abundance of monoclonal antibodies (mAbs) in development pipelines, developability assessments should also consider the ability of mAbs to integrate into the downstream platform. This study investigates the influence of amino acid substitutions in the complementarity-determining region (CDR) of a full-length IgG1 mAb on the elution behavior in preparative cation exchange chromatography. Single amino acid substitutions within the investigated mAb resulted in an additional positive charge in the light chain (L) and heavy chain (H) CDR, respectively. The mAb variants showed an increased retention volume in linear gradient elution compared with the wild-type antibody. Furthermore, the substitution of tryptophan with lysine in the H-CDR3 increased charge heterogeneity of the product. A multiscale in silico analysis, consisting of homology modeling, protein surface analysis, and mechanistic chromatography modeling increased understanding of the adsorption mechanism. The results reveal the potential effects of lead optimization during antibody drug discovery on downstream processing

    Nanogap structures for molecular nanoelectronics

    Get PDF
    This study is focused on the realization of nanodevices for nano and molecular electronics, based on molecular interactions in a metal-molecule-metal (M-M-M) structure. In an M-M-M system, the electronic function is a property of the structure and can be characterized through I/V measurements. The contact between the metals and the molecule was obtained by gold nanogaps (with a dimension of less than 10 nm), produced with the electromigration technique. The nanogap fabrication was controlled by a custom hardware and the related software system. The studies were carried out through experiments and simulations of organic molecules, in particular oligothiophenes

    Medicalization and beyond: the social construction of insomnia and snoring in the news

    Get PDF
    What role do the media play in the medicalization of sleep problems? This article, based on a British Academy funded project, uses qualitative textual analysis to examine representations of insomnia and snoring in a large representative sample of newspaper articles taken from the UK national press from the mid-1980s to the present day. Constructed as `common problems' in the population at large, insomnia and snoring we show are differentially located in terms of medicalizing—healthicizing discourses and debates. Our findings also suggest important differences in the gendered construction of these problems and in terms of tabloid and `broadsheet' newspaper coverage of these issues. Newspaper constructions of sleep, it is concluded, are complex, depending on both the `problem' and the paper in question

    Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface

    Full text link
    Electromigration-induced flow of islands and voids on the Cu(001) surface is studied at the atomic scale. The basic drift mechanisms are identified using a complete set of energy barriers for adatom hopping on the Cu(001) surface, combined with kinetic Monte Carlo simulations. The energy barriers are calculated by the embedded atom method, and parameterized using a simple model. The dependence of the flow on the temperature, the size of the clusters, and the strength of the applied field is obtained. For both islands and voids it is found that edge diffusion is the dominant mass-transport mechanism. The rate limiting steps are identified. For both islands and voids they involve detachment of atoms from corners into the adjacent edge. The energy barriers for these moves are found to be in good agreement with the activation energy for island/void drift obtained from Arrhenius analysis of the simulation results. The relevance of the results to other FCC(001) metal surfaces and their experimental implications are discussed.Comment: 9 pages, 13 ps figure

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well
    corecore