1,201 research outputs found

    Technological change in markets with network externalities

    Get PDF
    Technological Change;Externalities

    Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma

    Get PDF
    The plasma cell proliferative disorders monoclonal gammopathy of undetermined significance (MGUS) and malignant multiple myeloma (MM) are characterized by an accumulation of transformed clonal plasma cells in the bone marrow and production of monoclonal immunoglobulin. They typically affect an older population, with median age of diagnosis of approximately 70 years. In both disorders, there is an increased risk of infection due to the immunosuppressive effects of disease and conjointly of therapy in MM, and response to vaccination to counter infection is compromised. The underlying factors in a weakened immune response in MGUS and MM are as yet not fully understood. A confounding factor is the onset of normal aging, which quantitatively and qualitatively hampers humoral immunity to affect response to infection and vaccination. In this review, we examine the status of immune alterations in MGUS and MM and set these against normal aging immune responses. We focus primarily on quantitative and functional aspects of B-cell immunity. Furthermore, we review the current knowledge relating to susceptibility to infectious disease in MGUS and MM, and how efficacy of conventional vaccination is affected by proliferative disease-related and therapy-related factors

    Learning together: a transdisciplinary approach to student–staff partnerships in higher education

    Full text link
    © 2019, © 2019 HERDSA. Partnership in higher education has gained prominence over recent decades, but recent studies have identified a lack of research exploring how partnership practices unfold in specific disciplinary contexts. This article explores how a transdisciplinary approach can be used to better understand and facilitate student–staff partnerships where staff and students have diverse disciplinary backgrounds and knowledge. We present a case study of the Bachelor of Creative Intelligence and Innovation at the University of Technology Sydney, focusing on the adaptation of our curriculum co-creation processes by drawing on multiple knowledge types through a reflexive process of mutual learning. We conclude that explicit consideration of these principles, which are common to both transdisciplinary and partnership frameworks, have the potential to enhance consideration of diverse perspectives and the roles played by worldviews, norms and values when building student–staff partnerships around curriculum co-creation

    Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum

    Get PDF
    A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of <sup>13</sup>C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate <i>Apectodinium</i>. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX<sub>86</sub>, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX<sub>86</sub> proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant <i>Apectodinium</i> confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 10<sup>3</sup> – 10<sup>4</sup> years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf

    Quantized vortices and collective oscillations of a trapped Bose condensed gas

    Full text link
    Using a sum rule approach we calculate the frequency shifts of the quadrupole oscillations of a harmonically trapped Bose gas due to the presence of a quantized vortex. Analytic results are obtained for positive scattering lengths and large N where the shift relative to excitations of opposite angular momentum is found to be proportional to the quantum circulation of the vortex and to decrease as N^{-2/5}. Results are also given for smaller values of N covering the transition between the ideal gas and the Thomas-Fermi limit. For negative scattering lengths we predict a macroscopic instability of the vortex. The splitting of the collective frequencies in toroidal configurations is also discussed.Comment: Rextex, 4 pages, 1 postscript figur

    Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein:Intercow differences and dietary effects

    Get PDF
    In bovine milk serum, the whey proteins with the highest N-glycan contribution are lactoferrin, IgG, and glycosylation-dependent cellular adhesion molecule 1 (GlyCAM-1); GlyCAM-1 is the dominant N-linked glycoprotein in bovine whey protein products. Whey proteins are base ingredients in a range of food products, including infant formulas. Glycan monosaccharide composition and variation thereof may affect functionality, such as the interaction of glycans with the immune system via recognition receptors. It is therefore highly relevant to understand whether and how the glycosylation of whey proteins (and their functionality) can be modulated. We recently showed that the glycoprofile of GlyCAM-1 varies between cows and during early lactation, whereas the glycoprofile of lactoferrin was highly constant. In the current study, we evaluated intercow differences and the effects of macronutrient supply on the N-linked glycosylation profiles of the major whey proteins in milk samples of Holstein-Friesian cows. Overall, approximately 60% of the N-glycan pool in milk protein was sialylated, or fucosylated, or both; GlyCAM-1 contributed approximately 78% of the total number of glycans in the overall whey protein N-linked glycan pool. The degree of fucosylation ranged from 44.8 to 73.3% between cows, and this variation was mainly attributed to the glycans of GlyCAM-1. Dietary supplementation with fat or protein did not influence the overall milk serum glycoprofile. Postruminal infusion of palm olein, glucose, and essential AA resulted in shifts in the degree of GlyCAM-1 fucosylation within individual cows, ranging in some cases from 50 to 71% difference in degree of fucosylation, regardless of treatment. Overall, these data demonstrate that the glycosylation, and particularly fucosylation, of GlyCAM-1 was variable, although these shifts appear to be related more to individual cow variation than to nutrient supply. To our knowledge, this is the first report of variation in glycosylation of a milk glycoprotein in mature, noncolostral milk. The functional implications of variable GlyCAM-1 fucosylation remain to be investigated

    On parallel scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction

    Get PDF
    Multi-physics simulations, such as fluid-structure-acoustics interaction (FSA), require a high performance computing environment in order to perform the simulation in a reasonable amount of computation time. Currently used coupling methods use a staggered execution of the fluid and solid solver [6], which leads to inherent load imbalances. In [12] a new coupling scheme based on a quasi-Newton method is proposed for fluidstructure interaction which coupled the fluid and solid solver in parallel. The quasi- Newton method requires approximately the same number of coupling iterations per time step compared to a staggered coupling approach, resulting in a better load balance when running in a parallel environment. This contribution investigates the scalability limit and load-balancing for a strongly coupled fluid-structure interaction problem, and also for a fluid-structure-acoustics interaction problem. The acoustic far field of the fluid-structure-acoustics interaction problem is loosely coupled with the flow field

    On in-situ visualization for strongly coupled partitioned fluid-structure interaction

    Get PDF
    We present an integrated in-situ visualization approach for partitioned multi-physics simulation of fluid-structure interaction. The simulation itself is treated as a black box and only the information at the fluid-structure interface is considered, and communicated between the fluid and solid solvers with a separate coupling tool. The visualization of the interface data is performed in conjunction with the fluid solver. Furthermore, we present new visualization techniques for the analysis of the interrelation of the two solvers , with emphasis on the involved error due to discretization in space and time and the reconstruction. Our visualization approach also enables the investigation of these errors with respect of their mutual influence on the two simulation codes and their space-time discretization. For efficient interactive visualization, we employ the concept of explorable spatiotemporal images, which also enables finite-time temporal navigation in an in-situ context. We demonstrate our overall approach and its utility by means of a fluid-structure simulation using OpenFOAM that is coupled by the preCICE software layer
    • …
    corecore