1,540 research outputs found

    Geometric and homological finiteness in free abelian covers

    Full text link
    We describe some of the connections between the Bieri-Neumann-Strebel-Renz invariants, the Dwyer-Fried invariants, and the cohomology support loci of a space X. Under suitable hypotheses, the geometric and homological finiteness properties of regular, free abelian covers of X can be expressed in terms of the resonance varieties, extracted from the cohomology ring of X. In general, though, translated components in the characteristic varieties affect the answer. We illustrate this theory in the setting of toric complexes, as well as smooth, complex projective and quasi-projective varieties, with special emphasis on configuration spaces of Riemann surfaces and complements of hyperplane arrangements.Comment: 30 pages; to appear in Configuration Spaces: Geometry, Combinatorics and Topology (Centro De Giorgi, 2010), Edizioni della Normale, Pisa, 201

    Riding the Yield Curve: Diversification of Strategies

    Get PDF
    Riding the yield curve, the fixed-income strategy of purchasing a longer-dated security and selling before maturity, has long been a popular means to achieve excess returns compared to buying-and-holding, despite its implicit violations of market efficiency and the pure expectations hypothesis of the term structure. This paper looks at the historic excess returns of different strategies across three countries and proposes several statistical and macro-based trading rules which seem to enhance returns even more. While riding based on the Taylor Rule works well even for longer investment horizons, our empirical results indicate that, using expectations implied by Fed funds futures, excess returns can only be increased over short horizons. Furthermore, we demonstrate that duration-neutral strategies are superior to standard riding on a risk- adjusted basis. Overall, our evidence stands in contrast to the pure expectations hypothesis and points to the existence of risk premia which may be exploited consistently.Term Structure, Interest Rates, Market Efficiency, Taylor Rule

    AGN Feedback Compared: Jets versus Radiation

    Full text link
    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 104310^{43} and 104610^{46} erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20%20\% in 2020 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.010.10.01-0.1 M_\odot/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.Comment: 21 pages, 15 figures, 2 table

    The Basel Process and Financial Stability

    Get PDF
    The Basel Process is a key element of the global financial system and as such plays an important role in co-ordinating the multilateral efforts of various committees, uniquely geared towards fostering and maintaining financial stability.Basel Process, Monetary Stability, Financial Stability

    Haydeeite: a spin-1/2 kagome ferromagnet

    Full text link
    The mineral haydeeite, alpha-MgCu3(OD)6Cl2, is a S=1/2 kagome ferromagnet that displays long-range magnetic order below TC=4.2 K with a strongly reduced moment. Our inelastic neutron scattering data show clear spin-wave excitations that are well described by a Heisenberg Hamiltonian with ferromagnetic nearest-neighbor exchange J1=-38 K and antiferromagnetic exchange Jd=+11 K across the hexagons of the kagome lattice. These values place haydeeite very close to the quantum phase transition between ferromagnetic order and non-coplanar twelve-sublattice cuboc2 antiferromagnetic order. Diffuse dynamic short-range ferromagnetic correlations observed above TC persist well into the ferromagnetically ordered phase with a behavior distinct from critical scattering

    Recognition at a distance

    Get PDF

    On the Indeterministic Nature of Star Formation on the Cloud Scale

    Full text link
    Molecular clouds are turbulent structures whose star formation efficiency (SFE) is strongly affected by internal stellar feedback processes. In this paper we determine how sensitive the SFE of molecular clouds is to randomised inputs in the star formation feedback loop, and to what extent relationships between emergent cloud properties and the SFE can be recovered. We introduce the yule suite of 26 radiative magnetohydrodynamic (RMHD) simulations of a 10,000 solar mass cloud similar to those in the solar neighbourhood. We use the same initial global properties in every simulation but vary the initial mass function (IMF) sampling and initial cloud velocity structure. The final SFE lies between 6 and 23 percent when either of these parameters are changed. We use Bayesian mixed-effects models to uncover trends in the SFE. The number of photons emitted early in the cluster's life and the length of the cloud provide are the strongest predictors of the SFE. The HII regions evolve following an analytic model of expansion into a roughly isothermal density field. The more efficient feedback is at evaporating the cloud, the less the star cluster is dispersed. We argue that this is because if the gas is evaporated slowly, the stars are dragged outwards towards surviving gas clumps due to the gravitational attraction between the stars and gas. While star formation and feedback efficiencies are dependent on nonlinear processes, statistical models describing cloud-scale processes can be constructed.Comment: 24 pages, 16 figures, 6 tables. Accepted to MNRAS, version updated with published titl

    Carotenoids and Antioxidant Nutrients following Burn Injury a

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72213/1/j.1749-6632.1993.tb26193.x.pd

    Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter

    Full text link
    We investigate a beam splitter experiment implemented in a normal conducting fermionic electron gas in the quantum Hall regime. The cross-correlations between the current fluctuations in the two exit leads of the three terminal device are found to be negative, zero or even positive depending on the scattering mechanism within the device. Reversal of the cross-correlations sign occurs due to interaction between different edge-states and does not reflect the statistics of the fermionic particles which `antibunch'.Comment: 4 pages, 4 figure
    corecore