170 research outputs found

    Fe-spin reorientation in PrFeAsO : Evidences from resistivity and specific heat studies

    Full text link
    We report the magnetic field dependence of resistivity (ρ\rho) and specific heat (CC) for the non-superconducting PrFeAsO compound. Our study shows a hitherto unobserved anomaly at TSRT_{SR} in the resistivity and specific heat data which arises as a result of the interplay of antiferromagnetic (AFM) Pr and Fe sublattices. Below the AFM transition temperature (TNPrT_N^{\rm{Pr}}), Pr moment orders along the crystallographic c axis and its effect on the iron subsystem causes a reorientation of the ordered inplane Fe moments in a direction out of the abab plane. Application of magnetic field introduces disorder in the AFM Pr sublattice, which, in turn, reduces the out-of-plane Pr-Fe exchange interaction responsible for Fe spin reorientation. Both in ρ\rho(TT) and d(C/T)/dTd(C/T)/dT curves, the peak at TSRT_{SR} broadens with the increase of HH due to the introduction of the disorder in the AFM Pr sublattice by magnetic field. In ρ\rho(TT) curve, the peak shifts towards lower temperature with HH and disappears above 6 T while in d(C/T)/dTd(C/T)/dT curve the peak remains visible up to 14 T. The broadening of the anomaly at TNPrT_N^{\rm{Pr}} in C(T)C(T) with increasing HH further confirms that magnetic field induces disorder in the AFM Pr sublattice.Comment: 8 pages, 10 Figure

    Quantm Magnetoresistance of the PrFeAsO oxypnictides

    Full text link
    We report the observation of an unusual BB dependence of transverse magnetoresistance (MR) in the PrFeAsO, one of the parent compound of pnictide superconductors. Below the spin density wave transition, MR is large, positive and increases with decreasing temperature. At low temperatures, MR increases linearly with BB up to 14 T. For TT\geq40 K, MR vs BB curve develops a weak curvature in the low-field region which indicates a crossover from BB linear to B2B^2 dependence as BB\rightarrow0. The BB linear MR originates from the Dirac cone states and has been explained by the quantum mechanical model proposed by Abrikosov.Comment: accepted for publication in Appl. Phys. Let

    Anomalous thermal expansion of Sb2_2Te3_3 topological insulator

    Full text link
    We have investigated the temperature dependence of the linear thermal expansion along the hexagonal c axis (ΔL\Delta L), in-plane resistivity (ρ\rho), and specific heat (CpC_p) of the topological insulator Sb2_2Te3_3 single crystal. ΔL\Delta L exhibits a clear anomaly in the temperature region 204-236 K. The coefficient of linear thermal expansion α\alpha decreases rapidly above 204 K, passes through a deep minimum at around 225 K and then increases abruptly in the region 225-236 K. α\alpha is negative in the interval 221-228 K. The temperature dependence of both α\alpha and CpC_p can be described well by the Debye model from 2 to 290 K, excluding the region around the anomaly in α\alpha

    Adsorption Characteristics of Congo Red Dye onto PAC and GAC based on S/N ratio:A Taguchi Approach

    Get PDF
    Adsorption characteristics of Congo Red dye(CR)on powdered activated carbon(PAC)and granular activated carbon(GAC)from aqueous solutions was studied. The potential for the adsorption of Congo Red dye at a fixed initial concentration of 100 ppm on PAC and GAC was carried out. The experiments were carried out in a batch system to optimize operation variables :pH,time and temperature for the same adsorbent dosage of 0.2 mg in 50ml of dye solution.The Taguchi experimental design method was applied for the systematic and effective investigation of the optimal conditions of operation variables.The pH of the solution remains the major influencing factor for the adsorption process in all the experimental runs

    The magnetization of PrFeAsO0.60_{0.60}F$_{0.12} sueprconductor

    Full text link
    The magnetization of the PrFeAsO0.60_{0.60}F0.12_{0.12} polycrystalline sample has been measured as functions of temperature and magnetic field (H)(H). The observed total magnetization is the sum of a superconducting irreversible magnetization (MsM_s) and a paramagnetic magnetization (MpM_p). Analysis of dc susceptibility χ(T)\chi(T) in the normal state shows that the paramagnetic component of magnetization comes from the Pr+3^{+3} magnetic moments. The intragrain critical current density (JL)(J_L) derived from the magnetization measurement is large. The JL(H)J_L(H) curve displays a second peak which shifts towards the high-field region with decreasing temperature. In the low-field region, a plateau up to a field HH^* followed by a power law H5/8H^{-5/8} behavior of JL(H)J_L(H) is the characteristic of the strong pinning. A vortex phase diagram for the present superconductor has been obtained from the magnetization and resistivity data.Comment: A revised version with modified title,8 pages, 7 figure
    corecore