179 research outputs found

    Decision Making in Optimizing a Product of a Small Scale Industry: A Bayesian Analysis Approach

    Full text link
    This paper intends to find Expected monetary value (EMV), Expected opportunity loss (EOL) and conditional profit of the main product (Mukta) of a small scale industry–“ORGAMAN” situated at Jorhat District of Assam. To meet the above specific objectives, the method of Bayesian Analysis has been adopted. The data used in this endeavor is secondary in nature, collected by direct personal investigation. As per prior information, the target of the industry is to produce a minimum of 50 MT (low production) of product and a maximum of 350 MT (high production) of the same per month. The prior analysis reveals that the expected monetary value and expected opportunity loss are optimum against high production. Based on both the prior analysis and posterior analysis, it is observed that the profit for the product of the industry is maximum against high production of 350 MT per month. Although, the profit based on posterior analysis is slightly high, it seems that the additional amount of money has to be spend to collect additional information for posterior analysis

    Tetraiodothyroacetic acid (Tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid

    Get PDF
    Context: Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alpha v beta 3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. Objective: We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. Design: h-MTCcells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 mu g/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. Results: In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. Conclusions: Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models.Charitable Leadership Foundation/Medical Technology Acceleration ProgramPharmaceutical Research Institute of Albany College of Pharmac

    Minimalism in Radiation Synthesis of Biomedical Functional Nanogels

    Get PDF
    A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine

    Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    Get PDF
    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    Advances and Prospect of Nanotechnology in Stem Cells

    Get PDF
    In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development
    • …
    corecore