33 research outputs found

    Singularities on charged viscous droplets

    Full text link
    We study the evolution of charged droplets of a conducting viscous liquid. The flow is driven by electrostatic repulsion and capillarity. These droplets are known to be linearly unstable when the electric charge is above the Rayleigh critical value. Here we investigate the nonlinear evolution that develops after the linear regime. Using a boundary elements method, we find that a perturbed sphere with critical charge evolves into a fusiform shape with conical tips at time t0t_0, and that the velocity at the tips blows up as (t0−t)α(t_0-t)^\alpha, with α\alpha close to -1/2. In the neighborhood of the singularity, the shape of the surface is self-similar, and the asymptotic angle of the tips is smaller than the opening angle in Taylor cones.Comment: 9 pages, 6 figure

    Line tension and its influence on droplets and particles at surfaces

    Get PDF
    In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (∼1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW| ∼ 1–100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav ∼ +1–10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review

    Influence of temperature and surfactants on the solubilization of hexachlorobutadiene and hexachloroethane

    Get PDF
    The solubilization of hexachlorobutadiene (HCBD) and hexachloroethane (HCA) in water as a function of temperature and in the presence of surfactants was investigated in order to predict their fate in groundwater and to increase their recovery. HCBD and HCA solubility data were experimentally determined at five temperatures in the range from (285.15 to 318.15) K. Thermodynamic parameters for dissolution (ΔsolG°, ΔsolH°, and ΔsolS°) have been calculated in order to propose a physical explanation of the minimum solubility observed between 293.15 and 298.15 K for both compounds. The solubilization process appeared to be influenced by the network of water molecules rather than by physical and chemical properties of HCBD or HCA, due to an opposite effect of temperature onto Brownian motion, which increases with temperature, and hydrogen-bond network, which collapses with temperature. Concerning the influence of surfactants, determination of the micelle–water partition coefficients (Kmw) and the molar solubilization ratio (MSR) has shown that the solubilization per micelle was more important for nonionic surfactants Triton X-100 and Tween 80 than for anionic SDBS. Also, the increase of solubility was 1 order of magnitude higher for liquid HCBD than for crystalline HCA irrespective of surfactant

    Raman Characterization of Phenyl-Derivatives: From Primary Amine to Diazonium Salts

    No full text
    International audienc
    corecore