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Abstract 

 In this review we examine the influence of the line tension  on droplets and particles at 

surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets 

at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid 

surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. 

On atomic scales, atomic rearrangements and reorientations of submolecular components give rise 

to an atomic line tension contribution atom (~ 1nN) which depends upon the similarity/dissimilarity 

of the droplet/particle surface composition compared with the surface upon which it resides. At 

nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a 

mesoscale contribution │vdW│ ~ 1 – 100 pN while, at millimeter length scales, the gravitational 

potential provides a gravitational contribution grav ~ +1 – 10 N. grav is always positive, whereas, 

vdW can be of either sign. Near wetting, for very small contact angle droplets, a negative line 

tension may give rise to a contact line instability. We examine these and other issues in this review. 
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1. Introduction 

 Two bulk phases, i and j, intersect at a surface. This surface possesses an associated surface 

tension or energy per unit area ij. Similarly, three bulk phases meet at a line, the three-phase 

contact line. This contact line possesses an associated line tension or energy per unit length . In 

this review we summarize our views on the line tension associated with a three-phase contact line. 

Thus, the ideas in this review are directly applicable to liquid droplets at a solid (Fig. 1a) or liquid 

(Fig. 1b) surface, particles at a liquid surface (Fig. 1c), as well as, thin films or foams in contact 

with a bulk liquid phase (Fig. 1d). The term “line tension” is also used to describe the two-

dimensional surface discontinuity for an (insoluble) surface monolayer at a liquid surface [1,2] 

(Fig. 1e), however, this review is restricted solely to the line tension at three-phase contact lines 

(Fig. 1a-d). 

 

The line tension plays an important role in governing the statics, dynamics, and stability of 

numerous soft matter systems. For example, the line tension determines droplet contact angles 

around fibers [3], at liquid [4], solid [5], and heterogeneous solid [6,7] surfaces, as well as, strongly 

influencing droplet behavior in the vicinity of wetting transitions [8-12]. When considering surface 

nucleation [13-17] and vaporization [18] phenomena, line tension contributions should be 

included. Surface dynamics, such as, droplet spreading [19,20] and droplet fragmentation [21,22] 

are both influenced by line tension effects. The stability of films [23], foams [24,25], liquid 

filaments [26,27], spherical droplets [28,29], and nanobubbles [30] are all governed by line tension 

effects. Line tension contributions are important in determining nanocolloidal adsorption [31] and 

attachment [32,33] to liquid surfaces and, thus, play a role in mineral separation via the flotation 
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Fig. 1 Examples of three-phase contact lines, possessing line tension , where three bulk phases 

meet: (a) liquid (L) droplet at a solid(S)-vapor(V) surface, (b) liquid droplet at a liquid-vapor 

surface, (c) solid particle at a liquid-vapor surface, and (d) thin film meeting a bulk liquid phase. 

Example of a two-dimensional discontinuity: (e) insoluble monolayer at a liquid-vapor surface. 
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process [34]. Further, it has been shown that the line tension influences the depletion interactions 

of nanoparticles adsorbed at liquid-vapor interfaces [35]. 

Despite the importance that the line tension plays in many surface related phenomena, line 

tension studies have often proven controversial. This controversy mainly stems from discrepancies 

in the line tension magnitude between mean field theories (│theory│ ~ 10-12 – 10-10 N), computer 

simulations (│MD│ ~ 10-12 – 10-11 N), and experimental measurements (│expt│ ~ 10-12 – 10-6 N) 

for the magnitude of the line tension [36,37]. The experimental range for the line tension 

magnitude is very broad where, although a number of experiments agree with theory and computer 

simulations, there are many other experiments (usually for large millimeter-sized liquid droplets 

at surfaces [38]) which differ by many orders of magnitude from mean field theoretical predictions. 

An added complication, originally pointed out by Gibbs [39], is that the line tension may be of 

either sign and, in fact, both positive and negative line tensions have been determined via theory, 

computer simulations, and experiment. Thus, the line tension has sometimes been characterized as 

being ill-defined, both in magnitude and in sign, where the reliability of many experimental 

measurements have been called into question. This has led to the rather unfortunate situation where 

the concept of the line tension is sometimes completely ignored in situations where it will play an 

important role. The origin of the wide range in experimental line tension magnitudes │expt│ is 

addressed in a number of sections of this review (Secs. 2.3, 3.1.1, 4, and 5). 

There are other less contentious controversies in this field, some of which have now been 

resolved, while others are still generating significant discussion. In the partial wetting region a 

droplet on a solid surface will possess a finite, non-zero contact angle ( > 0o) where the three-

phase solid-liquid-vapor contact line (Fig. 1a) possesses an associated line tension . As a wetting 

transition is approach (eg. by increasing the temperature) the contact angle  decreases and 

becomes equal to zero at and above the wetting transition. The solid surface is now covered by a 

thick wetting film. Thus, the three-phase contact line disappears at a wetting transition. This 

disappearance of the three-phase contact line gives rise to many questions. What is the functional 

behavior of the line tension as the wetting transition is approached? Is the line tension zero, finite 

or infinite at the wetting transition? If the line tension is finite at the wetting transition, what is the 

sign of the line tension? Questions such as these generated significant theoretical discussion where 

differing groups arrived at differing answers. Much of this debate now appears to have been 

resolved [8]. The answers depend upon the order of the wetting transition (first or second order), 

as well as, the range of the surface interactions. These issues, including the origin of the sign of 

the line tension, will be discussed briefly in Sec. 2.3. 

An additional controversy is still ongoing. A number of years ago Clarke [40,41], as well 

as, Steigmann and Li [28,42] claimed that the three-phase contact line of a liquid droplet would be 

unstable if this contact line possesses a negative line tension. A number of groups examined this 

issue theoretically and found to the contrary that the three-phase contact line remains stable even 

for droplets possessing a negative line tension [43,44]. This issue of the contact line stability for 
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droplets possessing a negative line tension has been re-examined recently. The latest findings 

indicate that such droplets possess regions of stability and instability to contact line fluctuations 

[26,27,29]. These issues are discussed in more detail in Secs. 3.2.2 and 3.2.3. 

There have been many excellent reviews of the line tension at three-phase contact lines 

[36,37,45-49]. The purpose of the current line tension review is multifold:  

(a) Provide a pedagogical description of the line tension, aimed at the level of a senior 

undergraduate student, with sufficient details so that the reader can understand how the 

theoretical and computer simulation predictions arise (Sec. 2), which will provide a perspective 

on their range of validity.  

(b) Develop the theory used to deduce the line tension from experimental measurements (Sec. 3). 

Thus, the range of validity of the experimental line tension measurements can also be assessed. 

(c) With this perspective on the theoretical, computer simulation, and experimental estimates of 

the line tension it will then be possible to address current topics and controversies within the 

line tension field including the wide range in experimental line tension magnitudes │expt│ ~ 

10-12 – 10-6 N (Secs. 4 and 5), as well as, the conditions under which a negative line tension 

leads to a three-phase contact line instability (Secs. 3.2.2 and 3.2.3). 

 Two length scales play a prominent role in this field: 

(i)  The capillary length [50] 

mm
g

LV 1~1




          (1) 

where  is the liquid density (relative to air if we are considering a liquid droplet on a solid surface 

in air) while g is the acceleration due to gravity. For small liquid droplets, much less than the 

capillary length, surface tension effects play the dominant role. Droplets in this regime exhibit a 

spherical cap shape and, in most cases, gravity can be ignored; however, see Eq. (62) and the 

associated discussion. For liquid droplets of the order of the capillary length and larger, 

gravitational effects must always be considered. 

(ii) The total energy of an object, residing at a surface, is determined by its surface energies  (an 

energy per unit area) and its line tension  (an energy per unit length).  Thus, the ratio of these two 

quantities defines the “line tension length”  

 /          (2) 

below which the line tension plays a prominent role, and above which the surface tension plays a 

prominent role. Ascertaining the correct line tension magnitude is therefore very important. If 
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mean field estimates for the line tension are correct (│theory│ ~ 10-12 – 10-10 N), as the surface 

tension for many organic liquids is  ~ 20 mJ/m2, then the maximum value for  would be 

nmtheory 5~(max)         (3) 

and for most surface phenomena, except at nanometer length scales, one could safely ignore the 

issue of the line tension. The small values for the line tension are consistent with the estimates 

from dimensional analysis, where 𝜏 ~
𝑘𝐵𝑇

𝑎
= 10−11𝑁 [51], with 𝑎 being an atomic length scale 

~0.1 nm. Such small values are expected for simple fluids far from critical conditions. However, 

if││ >> 10-10 N, as reportedly observed in many experiments, then  could be considerably 

larger. This reasoning is strictly valid only far from a wetting transition. Near a wetting transition 

(eg. a liquid wetting a solid surface), one must compare the solid/vapor surface of surface energy 

SV with the same surface when covered by a (macroscopic) liquid layer of surface energy SL + 

LV. The relevant quantity to consider is therefore the spreading coefficient defined as 

)( LVSLSVS   ,       (4) 

where, in the partial wetting regime, S < 0. The spreading coefficient S should be compared with 

the line tension  because what is of interest is “Does the line tension assist in advancing this 

(partially wetting) droplet across the solid surface?”. For very large droplets (i.e. in the absence of 

line tension effects) the macroscopic droplet contact  is determined by Young’s equation [52] 

)5(1

)5(cos

b
S

a

LV

LV

SLSV













    

where Eq. (4) has been used in deducing Eq. (5b). Hence, the relevant length scale should be the 

spreading pressure line tension length [40] 

)1(cos 







LV

S
S

.       (6) 

See for example Eq. (74) and the accompanying discussion. Near a wetting transition S can get 

very large, for example, if  = 1o then S ~  50 m and line tension effects are very important near 

wetting transitions. 

 

 



7 

 

 This review is set out as follows. It is divided into three major sections: Secs. 2, 3 and 4. 

Secs. 2 and 3 provide, respectively, a theoretical and experimental perspective on the line tension, 

in the absence of any gravitational effects. Sec. 4 considers the issue of large millimeter-sized 

droplets where gravity will play a role and contribute to the line tension. Secs. 2 and 3 are further 

subdivided, as described below.  

Sec. 2.1 provides a brief summary of theoretical and computer simulation estimates for the 

line tension. The line tension is intricately interconnected to the wettability of the surface 

determined by the spreading coefficient S (Eq. (4)), as well as, the surface potential V(l) (Eq. (7)) 

where l = l(x) is, for example, the thickness of a liquid film on a surface and how it varies with 

position x in the vicinity of a three-phase contact line. Therefore, a brief description of wettability 

and how this wettability is determined by the surface potential V(l) is provided in Sec. 2.2. The 

mean field interface displacement model for the line tension  is presented in Sec. 2.3, thus 

allowing us to understand the line tension magnitude and sign and how these quantities are 

determined by V(l) and S. On approaching a wetting transition where S  0, for known V(l), it is 

then possible to understand the variation of  on approaching a first-order and second-order wetting 

transition, as well as, the variation in the line tension in the vicinity of an off-coexistence 

prewetting transition. The developments in Sec. 2.3 provide insights into the origin of the mean 

field theoretical line tension estimates contained in Sec. 2.1. 

As mentioned earlier, line tension measurements are frequently controversial because their 

magnitudes have been reported to vary over six orders of magnitude which, in many cases, is many 

orders of magnitude larger than the mean field predictions from theory or computer simulations 

described in Sec. 2.1. This wide range in experimental line tension magnitudes and the 

corresponding discrepancy with theory has never been satisfactorily explained. It has been 

suggested that the very large line tensions, ~ 1uN, could be connected to artifacts in optical 

measurements [50]. A critical assessment of the various experimental methods for determining the 

line tension is therefore necessary in order to better understand the validity and limitations of the 

differing line tension measurement techniques. Sec. 3 reviews many different methods for 

measuring the line tension where these examples are taken from our published research. The theory 

used to extract the line tension from experiment is reviewed for each experimental technique. 

Inevitably this theory, for determining the line tension, involves considerations of the equilibrium 

mechanical energy E of an object at a surface including both surface and line tension terms. Objects 

which are considered in this section include,  

(a) spherical nanoparticles at liquid surfaces (Sec. 3.1),  

(b) liquid droplets at both solid and liquid surfaces (Sec. 3.2), and  

(c) nucleated surface droplets (Sec. 3.3). 
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In each of these sections sufficient details are provided so that a student can determine the modified 

Young’s equation which determines how the presence of a line tension  influences the contact 

angle  of that object with a surface. A governing theme throughout this review, that a student 

should keep in mind, is that the equilibrium position of an object is just determined by its minimum 

mechanical energy. Thus, it is a matter of simple calculus where, for equilibrium, dE/d = 0 and 

d2E/d2 > 0. The line tension is extracted by comparing experiments with the modified Young’s 

equation using examples from our past publications. Interrelated work by others is also provided 

in each section. As this review is primarily aimed at upper level undergraduate students if the 

calculations are deemed too complicated or tedious, then a broad outline is provided and the 

interested reader is directed to the relevant literature. 

 The determination of the modified Young’s equation for a spherical colloidal particle at a 

liquid surface (Sec. 3.1.1) possesses an added benefit. This work allows us to assess and 

comprehend the computer simulation estimates for the line tension which are derived by simulating 

a colloidal particle at a liquid surface. Computer simulations play a valuable role in this instance, 

as they provide a link between line tension values and the intermolecular interactions. Sec. 3.2.2 

describes experiments where droplets at a liquid surface possess a negative line tension where this 

negative line tension causes an instability in the three-phase liquid-liquid-air contact line. Thus, 

the circumstance under which a negative line tension gives rise to a three-phase contact line 

instability is addressed in Sec. 3.2.3. 

 An important component of this review is our critique and personal assessment of the 

validity and reliability of each of the line tension measurements (Secs. 3.1.3, 3.2.3, and 3.3.2). In 

these critiques, as a service to the reader, we additionally point out what we perceive as 

misconceptions or errors in the literature. 

 With the review of theoretical, computer simulation and experimental line tension 

estimates complete (Sec. 2 and 3), we turn to the subject of the large line tension magnitudes found 

for millimeter-sized droplets (│expt│ ~ 10-6 N) in Sec. 4. Sec. 5 provides a summary, discussion, 

and assessment of the line tension at three-phase contact lines. 

 

2. Theoretical perspectives on the line tension 

2.1 Theoretical and computer simulation estimates for the line tension 

magnitude. 

Many different groups have theoretically estimated the magnitude and sign of the line 

tension for a variety of the configurations depicted in Fig. 1. For example, De Feijter and Vrij [53], 

as well as, Rowlinson and Widom [51] (RW) have estimated the line tension for a soap film (or 

Newton black film) of thickness s in contact with a bulk liquid phase (Fig. 1d). For symmetric 
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systems where the two vapor phases are equal (V1 = V2) then RW demonstrate that the line tension 

is negative, which is the same sign determined by de Feijter and Vrij. If the system is asymmetric 

(V1 ≠ V2) then the line tension may be positive. In the RW calculation the line magnitude ││ ~ 

s where  is the surface tension and, therefore, for a Plateau border ││ ~ 10-12 to 10-10 N. Getta 

and Dietrich [54] and Koch, Dietrich and Napiórkowski [55] have used mean field microscopic 

Density Functional Theory to study the line tension of liquid films at, respectively, homogeneous 

and chemical structured substrates where they have taken into account the interactions between 

the fluid and the substrate. They find that ││ ~ / ~ 10-11 N where  and  are, respectively, the 

interaction strength and well depth. The Density Functional Theory approach has also been used 

to calculate line tensions for electrolytic solutions adsorbed on solid substrates. The line tensions 

are of order 1 pN and increase with the ionic strength of the solution [56]. 

Computer simulations of 1-5 nm diameter spherical colloidal particles at either a liquid-

vapor [57,58]  or liquid-liquid [59] interface determined line tension magnitudes of ││ ~  10-12 

to 10-11 N in agreement with these theoretical estimates. Negative line tensions were observed at 

the liquid-vapor surface, whereas, at the liquid-liquid surface negative (positive) line tensions were 

observed for the smallest (largest) particles. In these early computer simulations, colloidal particles 

were represented by structureless spheres possessing a diameter as well as a Lennard-Jones 

interaction potential between the fluid molecules and the colloidal sphere. The line tension of 

nanoparticles at interfaces can also be estimated from an analysis of the depletion forces of particle 

pairs adsorbed at fluid interfaces. This approach predicts line tensions that agree in sign and 

magnitude with those extracted from the analysis of single particles [35]. In a later computer 

simulation [60], a colloidal particle at the air-water surface was represented by a more realistic all 

atom simulation where the gold core was surrounded by a passivating alkyl-like ligand shell. The 

ligand shell deformed at the interface. Line tension estimates were not attempted in this later 

simulation. The line tension of nanodroplets adsorbed on solid substrates has also been considered 

in the context of computer simulations [61-64]. These simulations focused on simple fluids 

modeled using the Lennard-Jones potential. Computation of the line tension involved simulation 

of spherical and cylindrical droplets possessing different curvatures. It has been observed that the 

spherical droplets feature a linear dependence with curvature, consistent with the corrected 

Young’s equation predictions, while such dependence is not observed, as would be expected, for 

cylindrical droplets. The line tensions obtained from this simulation analysis vary in the range 1-

10 pN, are negative and depend upon the wettability of the substrate [61]. These observations are 

broadly consistent with those inferred from simulations of nanoparticles [57-59].  The line tension 

magnitude is also consistent with the estimates of Density Functional Theory [61] using the sharp 

kink approximation [54]. Very large values of the line tension in the range 10-100 pN (positive) 

have been reported for water droplets adsorbed on graphite [65-67]. In one of these studies it has 

been shown that quantum nuclear degrees of freedom do not influence the value of the contact 

angle [67]. 
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The line tension has also been computed using Monte Carlo simulations [68,69], which 

can also provide a direct route to the free energy, and hence do not rely upon computations of the 

contact angle. This approach has been applied to the calculation of the line tension for models of 

ternary mixtures [68], as well as, for the Ising model [69]. For the ternary mixtures negative line 

tensions of  
𝜏𝑎

𝑘𝐵𝑇
~ − 0.1 were obtained. For atomic length scales of 0.1 nm and a temperature 

T~300 K, this value corresponds to line tensions of the order of pN. 

 Overall, theoretical and computational approaches predict line tension values that fit 

broadly in the interval 1-10 pN. Both positive and negative values have been reported. The 

estimates of water-graphite are on the higher side, and values of up to 100 pN have been reported. 

The origin of these very large values warrant further investigation. 

 

2.2 Wetting and phase diagrams 

In order to better understand both the sign of the line tension and its variation with 

temperature in the vicinity of a surface phase transition, it is necessary to describe wetting 

phenomena and how wetting is influenced by the surface potential. We begin by considering a 

liquid droplet L in the partial wetting region on a molecularly smooth and homogeneous substrate 

S in vapor phase V (Fig. 2a). This droplet, of lateral radius r, makes a contact angle  with the 

solid substrate. If this droplet is sufficiently large (i.e. r large but less than the capillary length -1 

~ 1mm, so that gravitational effects can be ignored) the contact angle is determined to a good 

approximation solely by surface energy effects and  is now denoted by ∞ (the macroscopic 

contact angle). By balancing the forces per unit length (or surface energies) along the substrate, 

one obtains Young’s equation (Eq. (5a)), which relates ∞ to the surface energies ij between 

adjacent phases i and j. Alternatively, ∞ can be expressed in terms of the spreading coefficient S  

as given in Eq. (5b). The spreading coefficient compares the surface energy difference between 

the solid substrate in contact with a vapor phase (of surface energy SV) and the same substrate 

covered by a macroscopic liquid layer (of surface energy SL + LV). In the partial wetting regime 

SV < SL + LV, hence, S < 0 and the droplet possesses a finite, non-zero contact angle with the 

solid substrate (∞ > 0).  
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 As the droplet radius r decreases, the line tension  associated with the three-phase solid-

liquid-vapor contact line of circumference 2r must become more important and cause the contact 

angle  to deviate from its macroscopic value ∞, as will be described later (see Eq. (55a)). In the 

partial wetting regime where ∞ < 90o, a positive (negative) line tension tends to decrease 

(increase) the size of the droplet circumference in order to minimize the total droplet energy, hence, 

the contact angle  will increase above (decrease below) ∞ for a non-zero line tension. In the 

partial drying regime, where ∞ > 90o, analogous considerations apply. 

 In order to estimate the line tension theoretically, the microscopic surface structure and 

surface interactions in the immediate vicinity of the three-phase contact line must be taken into 

account. One can idealize the three-phase solid-liquid-vapor contact line as consisting of a liquid 

wedge which makes an angle  with the solid substrate, as shown in Fig. 2b, where we assume that 

the three-phase contact line is situated in the vicinity of the origin x = 0. The thickness of the liquid 

layer on the solid substrate l(x) will therefore be a function of distance x where, well away from 

the liquid droplet (x → -∞) the solid substrate is covered by an adsorbed film of thickness la and 

surface energy SV. Within the macroscopic liquid droplet (x → +∞), the film thickness approaches 

a thick liquid wedge possessing a contact angle  and surface energy SL + LV for sufficiently 

large film thicknesses (l >> 100nm). At intermediate values of the liquid film thickness (la < l < 

100nm) the surface energy (or surface interaction potential V(l)) is determined by the long range 

and short range forces that act upon the liquid film of thickness l. The forces that are present in a 

system are determined by the molecular constituents of the liquid, solid and vapor phases. The 

surface potential V(l) takes the following approximate form 

)7(.,)()()(~

)7(~],)(1[~)( 2

blllVlVlV

alllllV

aLVSLcxCvdW

aaSV








    


L

V

S     substrate

r

(a)

l(x)



x
la

(b)

Fig. 2 (a) Liquid droplet (L) of lateral radius r and contact angle  at a substrate (S) – vapor 

(V) surface. (b) In the immediate vicinity of the three-phase SLV contact line, the liquid 

thickness l(x) varies with distance x along the substrate, from an adsorption thickness la on the 

vapor side (x << 0), to a “liquid wedge” of contact angle  and thickness variation l(x) on the 

liquid side (x >> 0).  
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At small l ~ la, we assume a harmonic potential for V(l) (Eq. (7a)). At larger l (Eq. (7b)), numerous 

terms may contribute to V(l), depending upon the circumstance, including the van der Waals VvdW, 

screened Coulombic VC, and off-coexistence Vcx surface potentials. We briefly describe each of 

these terms, together with when they are applicable. The surface energies SL + LV are always 

present in Eq. (7b) if a mesoscopic liquid layer covers the solid substrate. The van der Waals 

surface potential VvdW(l) arises from an integration over pair interactions between molecules in the 

wetting layer, solid substrate, and vapor phase. Pairs of molecules experience a van der Waals 

interaction, due to fluctuating dipole moments, where the van der Waals force between two 

molecules varies as ~1/d6 at small separations d and ~1/d7 at large d where the finite speed of light 

has been accounted for. These force laws at small and large d give rise to, respectively, the non-

retarded (Eq. (8a)) and retarded (Eq. (8b)) van der Waals potential VvdW(l) which have the 

approximate forms [70] 

)8(.50,~

)8(10~,~)(

3

2

bnml
l

B

anml
l

A
lVvdW



 

Eq. (8b) takes into account the “retardation” experienced by the dispersion forces due to the finite 

speed of light. In many situations, seen in practice, it is sufficient to assume a non-retarded van 

der Waals potential (Eq. (8a)) where the Hamaker constant A can be approximated as the sum of 

a zero frequency A=0 and an optical frequency A>0 contribution [70] 

00    AAA         (9) 

kTA SLVL ))((~0         (10a) 

eSLVL hnnnnA  ))((~ 2222

0 
      (10b) 

where i (ni) is the static dielectric constant (optical refractive index) of phase i, kT is the thermal 

energy and he a characteristic electronic excitation energy at frequency e. The zero frequency 

term is only important for highly polar components (eg. water). In many cases, A=0 can be 

neglected and the Hamaker constant is therefore determined by the optical refractive indices of the 

various components.  

Eq. (8) represents only an approximation for the complete van der Waals or dispersion 

potential. The dispersion potential should, in reality, be described by the Dzyaloshinskii-Lifshitz-

Pitaevskii (DLP) theory for dispersion interactions [71], which takes into account the summation 

over the frequency dependent dielectric constant of the liquid layer (of thickness l), substrate, and 

vapor phase. A good description of the approximate theory, as given in Eqs. (8) – (10), can be 

found in the well-known book by Israelachvili [70]. A simple and clear description of the DLP 
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theory, along with a description of how to calculate this interaction from experimental dielectric 

data, can be found in Hough and White [72].  

 The van der Waals surface potential VvdW is always present in Eq. (7b) for finite l, whereas, 

the other terms (VC and Vcx) may or may not be present depending upon the circumstance. The 

screened Coulombic potential VC(l) is only present for ionized systems, for example, in electrolytic 

solutions or for surfaces which have undergone surface dissociation [70]. VC(l) possesses the 

approximate form of a Yukawa potential, 

)/exp(~)( CoC lllV         (11) 

where 𝜎0 is a constant that measures the interaction strength. This potential is sometimes called a 

short-ranged potential because of its exponential decay over a length scale lC. 

 A number of different physical processes can remove the substrate liquid layer (of 

thickness l) away from bulk two-phase coexistence, in which case, the off-coexistence term Vcx(l) 

in Eq. (7b) will be non-zero. In order to obtain a better physical understanding of this statement, 

we first discuss two-phase liquid-vapor coexistence. Fig. 3a depicts a typical liquid-vapor phase 

diagram. The heavy solid black line represents the two-phase coexistence curve, which separates 

the one-phase region from the two-phase region. In the two-phase region (below the coexistence 

curve), at a particular temperature T (horizontal red dotted line), the two vertical red dotted lines 

determine the liquid (L) and vapor (V) densities which are in coexistence (Fig. 3b). Above the 

coexistence curve, in the one-phase region, only a single vapor or liquid phase exists (Fig. 3c). On 

this phase diagram c and Tc represent the critical density and critical temperature, respectively; 

the liquid and vapor phases are indistinguishable at this critical point. If the system is prepared at 

the critical density c one can pass continuously from the two-phase region into the one-phase 

region (i.e. via a second-order phase transition). For any point, other than (c,Tc), on the 

coexistence curve the system undergoes a first-order phase transition, with its associated latent 

heat, in passing from the two-phase region into the one-phase region. The precise shape of the 

coexistence curve, especially in the vicinity of the critical point (c,Tc), is a complex topic which 

will not be discussed here and interested readers should consult other sources [73]. The presence 

of a surface potential V(l) may stabilize an adsorption or wetting (Fig. 3b)/prewetting (Fig. 3c) 

layer on the container walls. 
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Fig. 3 (a) Liquid-vapor phase diagram where the coexistence curve (heavy solid line) separates 

the two-phase region from the one-phase region. At a given temperature (horizontal red dotted 

line), the two vertical red dotted lines determine the liquid (L) and vapor (V) densities. As 

the temperature is increased towards the critical temperature Tc, V and L approach each other 

and become identical and equal to the critical density c at Tc. The critical point (c,Tc) 

therefore represents a second-order phase transition where one can pass continuously from the 

two-phase region into the one-phase region. For any other point on the coexistence curve, the 

system undergoes a first-order phase transition in passing from the two-phase region into the 

one-phase region. The horizontal blue dashed line corresponds to the wetting temperature Tw, 

below (above) which a macroscopic droplet of contact angle  on a solid substrate is greater 

than (equal to) zero. In the one-phase region a prewetting line (light solid line) joins onto the 

coexistence curve at Tw. The prewetting line terminates at a prewetting critical point at the 

prewetting critical temperature Tpwc. (b) Two-phase system, below the coexistence curve, with 

liquid (L) and vapor (V) phases of densities L and V in coexistence. The surface potential 

V(l) may stabilize an adsorption or wetting layer on the container walls at height H. (c) One-

phase system, above the coexistence curve, at low density (i.e. vapor phase). The surface 

potential V(l) may stabilize an adsorption or prewetting layer on the container walls, as 

described in the text. 
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Whenever a liquid layer on a substrate (or container wall) is removed from bulk liquid 

coexistence the off-coexistence term 

llVcx )(          (12) 

will be non-zero. Here cx   is the difference in chemical potentials between the liquid 

layer (  ) and bulk liquid ( cx ).   can take many different forms. 

 (i) For example, in Fig. 3b, the system is in two-phase coexistence where the bulk liquid and vapor 

phases are in equilibrium. At height H the van der Waals attraction has caused a liquid layer to 

form on the container wall. The chemical potential () of this liquid layer differs from the chemical 

potential of the bulk liquid (cx) due to an additional gravitational potential energy where 

gHgrav           (13a) 

and the density difference  = L – V.  

(ii) In Fig. 3c, we consider a situation in the one-phase region (above the coexistence curve) in the 

vapor phase at fixed temperature T. The liquid phase is not a stable bulk phase. The system has 

been removed from bulk liquid-vapor coexistence by the gas pressure p relative to the saturated 

vapor pressure psat. (At psat, vapor condenses to a bulk liquid.) For this situation 

)(log10

sat

p
p

p

v

kT
  .      (13b) 

where v is the liquid phase molecular volume. As depicted in Fig. 3c an adsorbed layer or a pre-

wetting layer may form on the container walls, in the one phase region, due to the surface potential 

V(l) as discussed below.  

(iii) In Figs. 3b and 3c we have assumed that the system is at constant temperature T. There are 

practical difficulties in achieving a constant temperature throughout a system. For example, in 

configuration Fig. 3b there may exist an intentional or unintentional temperature difference T = 

T – T(bulk) between the wetting layer and the bulk liquid phase. If T > 0 this temperature 

difference thins the wetting layer and contributes to the chemical potential difference [74,75] 

T

TLn

T

TLn
gHTgrav





      (13c) 

where L is the latent heat per molecule, and n is the number density of molecules in the wetting 

layer. In most practical cases T  dominates grav . For example, for grav  >> T  we require 

that T << 10-4 oC where we have assumed that  = 1g/cm3, H = 1cm, T = 300K, L = 5x10-20 

J/molecule and n = 5.5x1027 molecules/m3. This level of temperature uniformity (0.1mK/cm) is 
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extremely difficult to achieve in practice. Therefore, in most practical cases, T  >> p . This 

could explain why the van der Waals surface potential on occasion does not describe the adsorption 

or wetting layer thickness very well [76]. Unintentional temperature differences could be present 

in the system under study. Despite these concerns regarding thermal uniformity, in the following, 

we assume that 0 T , as is normal. However, situations may arise where T  may play a 

dominant role. 

 Thus far we have only described individual terms which enter Eq. (7) but not how these 

individual terms interact and control the shape of V(l) which, in turn, influence the wetting 

behavior of droplets on a surface. As a prelude to understanding V(l), we first examine the wetting 

behavior of droplets. Let us reconsider Fig. 3b. If we decrease the amount of liquid or increase the 

container size, eventually we will end up with a liquid droplet residing on the bottom of the 

container or, equivalently, a droplet residing on a solid substrate (Fig. 2a). The liquid and vapor 

phases are still in coexistence. If the temperature is now increased, LV decreases faster than the 

difference SV – SL because the thermal expansion coefficient of liquids are, in general, larger 

than solids. Hence, according to Young’s equation (Eq. (5a)), the contact angle  decreases with 

increasing temperature where both  and S (Eq. (5b)) are equal to zero at the wetting transition 

temperature Tw. Fig. 4a provides an example of this decrease in  with increasing temperature. 

At and above Tw the solid substrate is covered by a macroscopically thick wetting film (complete 

wetting). Below Tw, where S < 0 and  > 0, the solid surface around the liquid droplet is 

preferentially covered by an adsorbed film of thickness la and energy SV. The horizontal blue 

dashed line in Fig. 3a represents the wetting temperature Tw, below which one finds partial wetting 

( > 0) and above which one finds complete wetting ( = 0). The wetting of the solid substrate, 

above Tw, also surprisingly influences surface behavior in the one-phase region (where the bulk 

liquid is no longer a stable phase). A prewetting line (light solid line, Fig. 3a) adjoins the 

coexistence curve at Tw [77-79]. Consider a fixed vapor density V in the one phase region (Fig 

3c) where one decreases the temperature and crosses the prewetting line. Above the prewetting 

line an adsorbed layer covers the solid substrate (or container walls). As one crosses the prewetting 

line, the film thickness on the solid substrate undergoes a first-order jump and the solid substrate 

is covered by a prewetting layer, the thickness of which approaches the wetting layer thickness on 

the coexistence curve. The prewetting line ends at a prewetting critical point at temperature Tpwc 

(Fig. 3a), as discussed later. 
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How is the physics of this liquid-solid wetting transition captured within the temperature 

variation of the surface potential V(l)? Let us consider a specific example, namely, the wetting of 

a hexadecyltrichlorosilane (HTS) coated silicon wafer by an n-octane droplet. (Such a silicon 

wafer is coated by an alkane-like layer which is sixteen carbons long.) Two parameters control 

this wetting transition due to, respectively, the short-range and long-range interactions at the 

surface. The short-ranged interaction is controlled by the hexadecyltrichlorosilane layer which 

coats the silicon wafer, more specifically, the methyl terminal group (-CH3) of this monolayer 

determines the short-ranged interactions. The critical surface tension for a methyl terminal group 

is crit ~ 19-21 mN/m where this range in values originates from slight variations in the surface 

density of the alkyl silane coating layer (governed by the surface preparation). Liquids with LV < 

crit completely wet the solid substrate with  = 0, whereas, liquids with LV > crit partially wet 

the solid substrate with  > 0 [80]. Hence, LV = crit is equivalent to S = 0, namely, 

SLSVcrit           (14) 

according to Eq. (4). 

(b)(a)

Fig. 4 (a) Variation of cos with temperature T for an octane and octene droplet on a 

hexadecyltrichlorosilane coated silicon wafer. At Tw cos = 1. Reprinted (adapted) with 

permission from [9], © (1999) American Physical Society. (b) Thermal variation of wetting 

layer thickness on a hexadecyltrichlorosilane coated silicon wafer at a height H ~ 5mm above 

n-hexane (circles), n-heptane (squares) and n-octane (diamonds) liquid. Reprinted (adapted) 

with permission from [81], © (2003) American Chemical Society. 
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As LV(octane) = 21.8 mN/m, an n-octane droplet will partially wetting this HTS coated solid 

substrate at room temperature, however, as LV decreases with increasing temperature the octane 

droplet will undergo a wetting transition at some higher temperature (Fig. 4a). For an octane 

droplet on a HTS coated silicon wafer, as this system is uncharged (VC = 0) and at liquid-vapor 

coexistence (Vcx = 0), the non-retarded van der Waals potential (Eq. (8a)) determines the long-

ranged interaction where the optical contribution primarily determines the Hamaker constant (as 

octane is non-polar). Therefore, A > 0 because nS(silicon) > nL(octane) in Eq. (10b). These short- 

and long-range interactions imply that the interaction potential V(l) (Eq. (7)) possesses the form 

depicted in Fig. 5a for T < Tw where S < 0 and  > 0 according to Eq. (5b) in the partial wetting 

regime. For this situation, a finite contact angle droplet is surrounded by an adsorbed layer of 

thickness la. With increasing temperature, │S│ decreases and therefore  decreases until, at the 

(first-order) wetting transition temperature Tw, S = 0 and therefore  = 0 and the liquid completely 

wets the solid substrate. Fig. 5 documents how the interaction potential V(l) varies as a function 

of temperature below, at and above the wetting transition Tw. Fig. 4a shows the temperature 

dependence of cos for an n-octane or octene droplet on a hexadecyltrichlorosilane coated silicon 

wafer where  approaches zero at the wetting transition where Tw ~ 46oC for n-octane [9]. 

Fig. 5 Interaction potential V(l) as a 

function of liquid film thickness l on a solid 

substrate for Hamaker constant A > 0 for 

temperatures (a) below, (b) at, and (c) 

above the first-order wetting transition 

temperature Tw. This interaction potential 

is applicable for an n-octane droplet on an 

alkyl-silane coated silicon wafer, as 

described in the text. For T < Tw, in the 

vicinity of the three-phase SLV contact 

line, the film thickness varies as shown in 

Fig. 2b. The droplet is surrounded by an 

adsorbed film of thickness la and energy 

SV on the vapor side of the 3-phase 

contact line. On the liquid side of the 3-

phase contact line, l progressive thickens 

and approaches an energy of SL + LV. In 

(b) the dashed-dotted line indicates the 

change in shape due to the presence of an 

off-coexistence term l > 0. 
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According to Fig. 5 an alternative signature of a first-order wetting transition is a jump in 

the liquid layer covering the solid substrate from an adsorption thickness la, below Tw, to a wetting 

layer thickness lw, above Tw determined by the minimum in the interfacial potential (lw →  at 

liquid-vapor coexistence ( = 0)). This jump in layer thickness is readily observed away from 

liquid-vapor coexistence where l > 0 (Eq. (12)), for example, by examining the variation in 

liquid layer thickness on a substrate (or on the container wall Fig. 3b) at a height H above the 

liquid-vapor surface as a function of temperature. As Vcx varies linearly with l, the presence of this 

term changes the shape of V(l) as shown by the dashed-dotted line in Fig. 5b. Thus, when this term 

is present, the wetting transition temperature Tw is expected to move to higher temperature where 

additionally the wetting thickness lw is now finite, as described below. For this situation Eq. (7b) 

becomes 

.,~)(
2 aLVSL lll

l

A
lV       (15) 

at large layer thickness and the wetting layer thickness can be determined from the minimum in 

this energy, namely,  

0
lwdl
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where, as expected, lw →  as  → 0. The wetting transition is determined from the condition 

that  

)()( wa lVlV           (17a) 

at Tw, namely, from Eqs. (15), (17a), and (4) 
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2
       (17b) 

which reduces to S = 0 when  = 0 and lw → , as expected.  

Fig. 4b shows the variation in wetting layer thickness for n-hexane (open circles), n-

heptane (open squares) and n-octane (solid diamonds) vapor wetting a hexadecyltrichlorosilane 

coated silicon wafer [81]. This silicon wafer is suspended at a height H ~ 5mm above each liquid. 

n-Hexane and n-heptane, which possess a lower surface tension than n-octane, completely wet the 

silicon wafer. n-Octane vapor exhibits a first-order wetting transition, indicated by the jump in 
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thickness at a temperature Tw ~ 60oC. This n-octane vapor wetting transition is about 15oC higher 

than that observed for a macroscopic n-octane droplet wetting a hexadecyltrichlorosilane coated 

silicon wafer determined from contact angle measurements (Fig. 4a). 

Thus far, we have used the surface potential V(l) (Eq. (7)) to describe the first-order wetting 

transition. This equation must necessarily also describe more exotic wetting transitions, such as, 

the prewetting transition [77-79] and the critical wetting transition [82]. As mentioned earlier, the 

blue horizontal dashed line in Fig. 3a denotes a (first-order) wetting transition temperature Tw 

where, for T < Tw, a droplet partially wets the substrate with finite non-zero contact angle  > 0 

while, for T > Tw, the substrate is completely wetted by the liquid with  = 0. In the one phase 

region of the phase diagram a prewetting line joins the bulk coexistence curve at Tw (Fig. 3a, light 

solid line). The presence of a surface potential Eq. (7b) stabilizes a prewetting film (eg. on the 

container walls, Fig. 3c) even though the bulk liquid phase is not yet a stable phase. For example, 

in the gaseous phase at a fixed density v, which intersects the prewetting line, the temperature T 

can be varied above and below the prewetting line. Assuming we are not too near the critical point 

the vapor pressure p, in the gaseous phase, will be approximately ideal and given by  

RTp v .         (18) 

At temperatures above the prewetting line, the container wall will be coated with an adsorption 

film thickness la. If the temperature is dropped below the prewetting line, there will be a first-order 

jump in film thickness (Fig. 6) dictated by Eqs. (16a) and (16b). During this transition, the chemical 

potential difference  is removed from bulk liquid-vapor coexistence according to Eq. (13b) 

where the saturated vapor pressure that appears in this equation is at temperature T, namely, 

)(Tpp satsat  . The prewetting line in Fig. 3a represents a line of first-order surface wetting 

transitions given by Eq. (17b). This prewetting line ends at a prewetting critical point with 

prewetting temperature Tpwc. The prewetting critical point corresponds to a saddle point in the 

interfacial potential, namely, at this point  

 0
2

2



lw
dl

Vd
         (19) 

along with Eqs. (16a) and (16b).  
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Other more exotic wetting transitions must also follow from Eq. (7). For example, at bulk 

liquid-vapor coexistence  = 0 with S > 0, B > 0 (Eq. (8b)) and if the Hamaker constant A in Eq. 

(8a) changes sign from negative to positive with increasing temperature then the system will 

undergo a continuous or critical wetting transition (Fig. 7) at temperature Tcw where the wetting 

layer thickness diverges continuously at Tcw according to [82] 
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Fig. 6 (a) Variation in the surface potential V(l) in the vicinity of the pre-wetting (Tpw) and 

coexistence (Tcx) temperatures. (b) Corresponding variation in the pre-wetting thickness as a 

function of temperature. Heavy solid line: pre-wetting thickness at absolute minimum in V(l) 

for each temperature where a discontinuous jump in thickness is observed at Tpw with 

decreasing temperature. Light solid line: thicker pre-wetting film (lpw) may become metastable 

with increasing temperature. 
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2.3 Interface displacement model for the line tension 

 With this prelude to wetting, and its interrelationship to the surface potential V(l) 

completed, we now return to the subject of calculating the line tension. Here we follow the 

discussion of Indekeu [83] for calculating the line tension  using the interface displacement 

model. The line tension (l(x)), at the three-phase contact line of a droplet on a substrate, is a 

functional of the interfacial film thickness l(x), which varies with distance x in the vicinity of the 

contact line (Fig. 2b). Specifically, 
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where the first and second terms in the integrand account for, respectively, the energy cost due to 

the surface tension LV and interfacial potential V(l) in the vicinity of the surface. At equilibrium, 

the functional (l(x)) must be minimized with respect to l(x), which leads to 
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Fig. 7 (a) Interfacial potential V(l) for a second-order wetting transition where the Hamaker 

constant A changes sign with temperature. (b) Experimental measurements of thickness 

variation with temperature. Reprinted (adapted) with permission from [82], © (1996) American 

Physical Society. 
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In Eq. (22a), the correlation length  is a characteristic length along the substrate, while L is a 

dimensionless film thickness where the origin in L has been shifted to the adsorption minimum at 

l = la. Indekeu derived this equation for a partially wetting liquid droplet on a solid surface. Eq. 

(22a) possesses the same functional form as an equation derived earlier by de Feijter and Vrij [53] 

for a soap film in contact with a bulk liquid phase (Fig. 1d), which suggests that Eq. (22a) is rather 

general and relates the interfacial potential to the line tension for any three-phase contact line 

configuration. A plot of )(lV  versus l, in the partial wetting regime (Fig. 5a), allows a simple 

geometric interpretation of the line tension where the areas J1 and J2 that appear in Eq. (22b) are 

shown in Fig. 8. One can readily see from Fig. 8 that for sufficiently large │S │ the area J1 must 

be small and therefore the line tension  < 0. With decreasing │S │ the area J1 increases while J2 

decreases. The line tension  = 0 when J1 = J2 while, at the first-order wetting transition temperature 

Tw, J2 = 0 and hence  > 0.  

 

 

 Figs. 5, 6a and 7a show the variation of V(l) with temperature T for, respectively, a first-

order, pre-wetting, and critical wetting transition. Eq. (22a) can be used to predict the variation of 

the line tension  with temperature T for each of these surface phase transitions. Dodds [84] 

modeled pentane droplets on water and calculated the variation in the line tension  as a function 

of dimensionless temperature T/Tc using the interface displacement model where a first-order 

wetting transition occurs at T/Tc = 0.5 and Tc is the critical temperature for this system. As 

expected, from the qualitative arguments above (Fig. 8 and associated text), the line tension  

changes from a negative to a positive value on approaching a first-order wetting transition (T/Tc ≤ 

0.5, Fig. 9) where the line tension magnitude ││ ~ 1-8 pN. Similar considerations allow one to 

calculate the boundary tension b between an adsorbed film and a pre-wetting film in the one-phase 

region (Fig. 9, T/Tc  0.5) where the qualitative behavior of V(l) with T was shown in Fig. 6a. 

)(lV

l0
0

S

1J

2J

Fig. 8 Plot of )(lV  versus thickness l, in the partial wetting regime (Fig. 5a), where the origin 

has been displaced to the adsorption thickness la. The areas J1 and J2 that appear in Eq. (22b) 

are shown in this figure. 
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 Indekeu [83] has examined how the line tension varies as a function of temperature on 

approaching a continuous or critical wetting transition. For this particular situation the line tension 

is predicted to be negative and then approach zero at Tcw (Fig. 10).  

 

 

 

 

 

 Experiments which examine the variation of the line tension  on approaching a first-order 

wetting transition will be described in Sec. 3.2.1. The predicted variations in boundary tension b 

on approaching a first-order wetting transition (Fig. 9, T/Tc  0.5) and the line tension  on 

approaching a critical wetting transition (Fig. 10) still remain to be observed. 

Fig. 10 Variation in line tension  on 

approaching a critical wetting 

transition. Reprinted (adapted) with 

permission from [8], © (1994) World 

Scientific Publishing Co., Inc. 

 

Fig. 9 Variation in line tension  with 

temperature for a pentane droplet on water 

on approaching (from below) a first-order 

wetting transition at T/Tc = 0.5. The 

variation in the boundary tension b with 

temperature between an adsorbed film and a 

pre-wetting film is also shown in the one 

phase region (T/Tc  0.5). Reprinted 

(adapted) with permission from [84], © 

(1999) American Chemical Society. 
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3. Experimental perspectives on the line tension 

 Numerous differing experimental techniques have been proposed for measuring the line 

tension. How the line tension is extracted from each of these experimental techniques is dependent 

upon the specific experimental geometry. We consider a number of different geometries in this 

publication, specifically, 

(i) spherical colloidal particles at liquid surfaces (Sec. 3.1),  

(ii) liquid droplets at either solid or liquid surfaces (Sec. 3.2), and 

(iii) the nucleation route to measuring the line tension (Sec. 3.3).  

In each section the theory associated with measuring the line tension, for that geometry, is first 

derived. A number of experimental measurements are then reviewed. Each section ends with a 

critique or commentary which compares line tension measurements with theory, discusses any 

experimental limitations, and attempts to resolve any discrepancies between theory and 

experiment. 

In prior sections of this review we observed that wetting behavior is determined by 

considering the energy minima of the interfacial potential V(l) (Eq. (7)) while the line tension  

(Eq. (22a)) is determined by minimizing the line tension functional  )(xl  (Eq. (21)) with respect 

to the interfacial displacement profile l(x). For mesoscopic objects (particles or liquid droplets at 

surfaces), considered in this section, with associated surface energies ij and line tension , the 

behavior of this object at a surface is determined by its mechanical stability at this surface, namely, 

the energy minima of this object. Mathematically, the easiest situation to understand is the 

behavior of spherical colloidal particles at liquid surfaces, hence, we consider this situation first in 

Sec. 3.1. Insights gleamed from spherical particles at liquid surfaces will enable us to understand 

the mathematically more complex situations of liquid droplets at solid or liquid surfaces (Sec. 3.2), 

as well as, the nucleation route for determining the line tension (Sec. 3.3).   

 

3.1 Spherical colloidal particles at liquid surfaces 

The physics of colloidal particles at liquid interfaces actually differs depending upon the 

colloidal particle size [31,85]. In the absence of any hydrodynamic flow or colloidal mixing in the 

bulk solution, the gravitational potential energy of a particle (relative to the thermal energy) 

determines how large a particle can be suspended in solution. The probability distribution of 

particles of radius R at height H is given by  

)3/4exp(~ 3 kTgHRp          (23) 
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where  is the density difference between the particle and the liquid medium. For typical liquid-

solid density differences ( ~ 1-18g/cm3), at typical sample container heights (H = 0.2~1cm), by 

equating the gravitational potential energy to the thermal energy, one determines the particle size 

limit where a change in behavior occurs. Specifically, for typical liquids and solids, this particle 

size limit occurs at a particle radius of Rgrav ~ 20nm (Fig. 11). For particles with R >> Rgrav any 

particles in solution sediment out and settle to the bottom of the sample container. Particles can 

still be kinetically trapped at the liquid-vapor (LV) surface by surface tension and line tension 

forces [85], as shown in the right hand side of Fig. 11. These large colloidal particles (R >> Rgrav) 

are in mechanical equilibrium at the liquid-vapor surface as discussed in Sec. 3.1.1 [85]. By 

contrast, when R << Rgrav particles at the liquid-vapor surface are in thermodynamic equilibrium 

with particles suspended in the bulk liquid solution, as depicted in the left hand side of Fig. 11. 

Small colloidal particles (R << Rgrav), or “nanoparticles” (NPs), are therefore in mechanical 

equilibrium at the liquid-vapor surface, as well as, in thermodynamic equilibrium with NPs 

dissolved in the bulk liquid solution as discussed in Sec. 3.1.2 [31]. 

 

 

 

 

 

Radius RRgrav ~ 20nm



gSV

gsol



TkVgH B

StaticsThermodynamics

1cm

0
0

H

Gcoh

Mechanical + thermodynamic

equilibrium

Mechanical equilibrium

gSL

sol

SV

SL

Gcoh

Fig. 11 Schematic of size-dependent colloidal particle behavior at liquid-vapor surfaces. When 

R >> Rgrav (R << Rgrav) , described in Sec. 3.1.1 (Sec. 3.1.2), colloidal particles sediment out 

of solution (remain suspended in solution). 
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3.1.1 Large spherical colloidal particles at liquid surfaces. 

Fig. 12 shows a large spherical colloidal particle of radius R (>> Rgrav) at the liquid-vapor 

surface. It protrudes a distance h above the surface and makes a contact angle  with the liquid-

vapor surface. The three-phase solid-liquid-vapor contact line possesses a lateral radius b, 

circumference 2b, and line tension . Therefore, the energy of this colloidal particle at the liquid-

vapor surface is given by 

 bAAE SLSVs 221         (24) 

where the surface areas RhA 21   and 1

2

2 4 ARA   . One must compare Es with the energy if 

this particle is completely submerged beneath the liquid surface, namely,  

LVSLb bAAE  2

21 )(         (25) 

where the last term in this expression represents the energy generated in the creation of an 

additional liquid-vapor surface of area b2. 

 

 

 

From geometry sinRb  and )cos1(  Rh  and, therefore, the energy difference E = 

Es – Eb   

 222 sinsin2)cos1(2cos RRRE LVLV  
   (26) 

b

r

h
A1

A2

Vapor

Liquid θ

(a) (b)

Vapor

Liquid

rR

Fig. 12 (a) Spherical colloidal particle of radius R, at a liquid-vapor surface, with protrusion 

height h, lateral radius b and contact angle . A1 (A2) is the particle area above (below) the liquid-

vapor surface. (b) Same particle submerged below the liquid-vapor surface. 
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where Young’s equation (Eq. (5a)) has been used in obtaining this equation. As the particle height 

h, above the liquid-vapor surface, (or correspondingly contact angle ) is varied the energy E 

changes. The minimum in this energy is found from the condition that 

0

cossin2cos2sin2cos 22



  


RRR
d

dE
LVLV

,  (27)    

corresponding to the particle being in mechanical equilibrium. Eq. (27) gives rise to the modified 

Young’s equation 

  1
/1coscos



  LVb        (28) 

which describes how the contact angle  varies due the presence of the line tension  where this 

equation necessarily reduces to  = ∞ in the absence of a line tension ( = 0).  

Fig. 13a provides a picture of how the energy E varies as a function of particle radius R 

and contact angle  for specific surface tension LV, line tension , and macroscopic contact angle 

. The solid line on this figure indicates a line of energy minima corresponding to the modified 

Young’s equation (Eq. (28)). This figure is more readily understood by considering cross-sections 

through this figure, at fixed particle radius R, as shown in Fig. 13b. The modified Young’s 

minimum occurs at  ~ 1 rad. For R > 124 nm, this minimum is a global minimum. If 124 nm > R 

> 82nm then this modified Young’s minimum is a local minimum as E possesses a lower value (= 

0) at  = 0o (i.e. complete wetting of the colloidal particle). A colloidal particle residing in this 

local minimum will remain in this metastable state because the height of the energy barrier 

(compared with the lowest energy state at  = 0o) is tens of thousands of kT. For a sufficiently 

small colloidal particle, defined by a minimum radius Rmin = 81.6 nm, the local modified Young’s 

minimum disappears and E exhibits saddle-point behavior where the colloidal particle will slip 

below the surface into the liquid phase. The saddle-point is defined by   0
min

22 


dEd  where  

 






3
2

2

2

coscos
cos

2
 

LVR

d

Ed
.      (29)    

This leads to a minimum contact angle min, below which colloidal particles will slip below the 

surface, where 

  3/1

min coscos   .        (30) 
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Combining Eqs. (28) with (30) leads to a minimum colloidal particle radius Rmin given by 

   1

minminmin cos/cos1sin


  LVR .     (31) 

Single isolated colloidal particles with R < Rmin are unstable at the liquid surface and disappear 

beneath the surface. Eqs. (28) and (30) have been derived earlier, via other methods, by Scheludko, 

Toshev and Bojadjiev [32]and Aveyard and Clint [86]. 

 In Fig. 13b for R = 140 nm, the particle adsorption Ea ~ 30,000 kT (i.e. energy to move 

particle from bulk liquid onto surface), desorption Ed ~ 50,000 kT (i.e. energy to remove particle 

E a E d

81.6 nm

140.0 nmE att

Fig. 13 (color online). (a) Energy E/kT Eq. (26) for LV = 39.9 mN/m,  = 0.93 nN, and 

 = 64.8o. Modified Young’s equation Eq. (28), solid line. (b) Energy cross-sections 

at fixed R = 81.6, 105.0, 124.0 and 140.0 nm where Rmin = 81.6 nm Eq. (31), heavy 

solid line. For R = 140.0 nm, particle adsorption Ea, desorption Ed and attachment 

Eatt energies are shown. Reprinted (adapted) with permission from [85], © (2012) 

American Physical Society. 

 



30 

 

from surface into bulk liquid), and attachment 
daatt EEE   energies are shown. The particle 

adsorption Ea and desorption Ed energies play an important role in NP phase transfer kinetics 

from one liquid phase into another liquid phase which is usually initiated via ligand exchange on 

the NP. The ligand exchange manipulates and lowers the heights of Ea and Ed so that this phase 

transfer is readily achieved. In this transfer process the NP must first be transferred from one liquid 

to the liquid surface (Ea) and then this NP is transferred from the liquid surface into the other 

liquid phase (i.e. Ed appropriately modified for transfer into the “vapor” phase where SV replaces 

SL in Eq. (25)). Ea, Ed, and Eatt are discussed in more detail in Sec. 3.1.3. 

 The analysis above suggests three alternative methods for determining the line tension : 

(i) Measure the contact angle  and deduce  from the modified Young’s equation (Eq. (28)). 

(ii) Estimate  from Rmin (Eq. (31)), below which single isolated colloidal particles are no longer 

stable at the liquid/vapor surface.  

(iii) Deduce  from an estimate of the desorption energy Ed for removing a particle from the 

liquid surface into the bulk liquid phase.   

Early studies obtained estimates for the line tension  using all three methods by employing 

optical microscopy and Langmuir trough pressure isotherms. Optical microscopy measurements 

[87] of the contact angle  versus fluorinated silica particle radii (for R > 10 m) at the 

dodecane/air surface placed an upper limit on the line tension  < 10-7N (Fig. 14a), however, this 

study possessed insufficient resolution to determine the precise magnitude of . Optical 

microscopy estimates for Rmin, for large silica particles (R ~ 50 m), obtained line tension values 

of  ~ 10-11N [88]. For such large particles, the weight and buoyancy force on the particles must 

be included in the governing equations. As observed in a later discussion (Eq. (62)), these weight 

and buoyancy contributions add a significant degree of complexity to these equations. By 

comparing the collapse pressure of a densely packed layer of particles, at the surface of a Langmuir 

trough, to NEd where N is the areal number density of particles for a closely packed layer the line 

tension was estimated to be  ~ 10-11 N [89]. Computer simulations [90,91] and experiments [92], 

however, indicate that the Langmuir trough collapse pressure may not necessarily be a good 

measure of the line tension. Associating NEd with a collapse pressure assumes complete 

expulsion of a close-packed NP layer into the bulk liquid phase, whereas, the collapse pressure 

may be more indicative of the buckling and folding of a close-packed NP layer. 
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 Clearly, in order to measure the line tension with high precision, an accurate estimate of 

the contact angle  of the NP with the liquid surface is necessary. Grigoriev et al. [93] and, more 

recently, Maestro et al. [94] and Zanini and Isa [95] provide an extensive review along with a 

critique of the many differing experimental techniques to estimate the contact angle of NPs at 

liquid surfaces. A number of the experimental methods suggested for measuring  (ellipsometry, 

reflectometry, Langmuir trough) do not measure  directly and instead require some interpretation 

of these measurements (a model for the surface packing) in order to extract . Additionally, these 

measurements extract an average <>ave from a layer of particles at the liquid surface, whereas, 

the energy difference E (Eq. (26)) is strictly valid only for single isolated colloidal particles. It is 

not known whether the average <>ave depends upon the particle cluster size, as clusters of 

particles possess an additional cohesive energy Gcoh (see Fig. 11) between adjacent particles which 

is not present in energy E. This question has been examined recently in a combined neutron 

reflectivity and computer simulation investigation of gold nanoparticles coated with an alkanethiol 

(a)

R (m)

(b)

(c)

(d)

(b)

Fig. 14 (a) Optical microscopy contact angle  vs particle radius for fluorinated silica particles 

at dodecane-air surface. Reprinted (adapted) with permission from [86], © (1996) Royal 

Society of Chemistry. (b)-(d)  Results for dodecyltrichlorosilane coated silica particles at PS-

air surface. Reprinted (adapted) with permission from [85], © (2012) American Physical 

Society. (b) AFM contact angle  vs radius R. Vertical (horizontal) dashed line Rmin (min). 

Inset: AFM phase image and cross-sectional height. (c) Polydisperse sample of average radius 

~ 65nm measured via TEM (solid rectangles and solid line), surface distribution of this sample 

at PS-air surface measured via AFM (open rectangles). (d) AFM image of NPs at PS-air 

surface. 
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layer [96]. Neutron reflectivity provides a route to measure the contact angle of nanoparticle 

monolayers in situ. Simulation and experimental contact angles exhibit good agreement. The 

simulations indicate that the contact angles of particles within a monolayer are ~3o larger compared 

with the contact angle for isolated particles. Using the energy, Δ𝐸 = −𝜋𝑟2𝛾𝑤(1 − 𝑐𝑜𝑠𝜃) (where 

line tension effects are ignored, as a first approximation), for the detachment of a particle into 

water, the nanoparticle radius (7 nm), and the water surface tension, we estimate that a variation 

in the contact angle of ~3o reflect changes in the adsorption energy of about 100 kT (T=300 K), 

which corresponds to ~10% of the adsorption energy for a hydrophobic particle possessing a 

contact angle of 121o. This amount can be considered a small correction to the actual energy, and 

we therefore expect that measurements of monolayers to provide a good approximation to the 

adsorption energy for isolated particles. Finally we note that if there is any buckling of the layer, 

or, if multilayers of particles form on the liquid surface then the methods discussed above will lead 

to an erroneous determination for . 

 Nanoscopic techniques which directly measure the contact angle  of particles at liquid 

surfaces are likely to provide a more reliable measure of the line tension . A number of novel 

experimental techniques have been developed. Paunov [97,98] developed a novel gel trapping 

technique where spherical colloidal particles are trapped at the aqueous-air or aqueous-oil surface 

by gelling the aqueous phase using a non-adsorbing hydrocolloid polymer. A replica of the 

colloidal particles, embedded in this gelled aqueous surface, is then made using a poly-

dimethylsiloxane silicone elastomer (PDMS).  The PDMS replica of the surface can then be 

studied using either scanning electron microscopy (SEM) [97] or AFM [98]. This technique has 

been used extensively to meaure particles at liquid surfaces [94]. An assumption in this gel trapping 

technique is that additives (eg. spreading solvent, non-adsorbing hydrocolloid polymer, PDMS) 

do influence the contact angle that the colloidal particle makes with the liquid surface. Recently 

Maestro et al. [99] noted a spreading solvent dependence to the contact angles measured via this 

technique, which they attributed to the porosity/surface roughness of the particles that they used. 

Isa and coworkers [100,101] developed a freeze/fracture shadowing technique to study 

colloidal particles at liquid/liquid surfaces. In this technique NPs are rapidly frozen at a 

liquid/liquid interface (eg. water/decane). This interface acts as a weak fracture plane. NPs 

embedded in the fractured surface are shadow cast using tungsten at an oblique angle. Cyro-SEM 

can then be used to image the shadow pattern from which the contact angle of the NP with the 

surface can be determined.  

For both the gel trapping techique, as well as, the freeze/fracture shadowing technique it is 

difficult to assess if mechanical stress, applied to the interface, in peeling the PDMS replica off or 

in fracturing the liquid-liquid surface perturbs the heights h with which the NPs protrude out of 

the surface. Any perturbation would lead to a wider distribution in contact angles  than is naturally 

present for an unfractured liquid/liquid interface.  
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 McBride and Law developed a new experimental technique which quantitatively tests the 

predictions of the modified Young’s equation, as well as, associated equations (Eqs. (28), (30) and 

(31)). The difficulty in the past has been to precisely measure the contact angle  of NPs at the LV 

surface with high precision without perturbing these particles away from their equilibrium 

position. These authors achieve this aim by preparing dodecyltrichlorosilane ligated silica particles 

at a polystyrene(PS)-air surface in the liquid PS phase. The PS is then allowed to cool slowly 

below the glass transition temperature so that these NPs are embedded and protrude above the PS 

solid-air surface. Atomic Force Microscopy (AFM) then enables these embedded particles to be 

imaged with nanometer spatial resolution (Fig. 14b, inset). From a measurement of the lateral 

radius b and protrusion height h one can determine the NP radius R and contact angle  for single 

isolated NPs at this PS-air surface. Eleven different groups of NPs with differing average radii in 

the range R ~ 80nm – 1m were made. Fig. 14b summarizes their measurements. The horizontal 

and vertical dashed lines on this figure represent, respectively, min (Eq. (30)) and Rmin (Eq. (31)) 

below which single isolated NPs are no longer stable at the LV surface. The solid line through the 

experimental data represents a best fit to the modified Young’s equation (Eq. (28))) with  = 

0.93nN. Hence, the experimental data in Fig. 14b are in precise agreement with the predictions 

which arise from the modified Young’s equation where the experimental data indicates that Rmin 

~ 80nm for this system. 

 As a further check on the reliability of Rmin ~ 80nm, McBride and Law also studied a 

polydisperse NP sample possessing an average particle radius Rave ~ 65nm and a broad size 

distribution, as shown by the TEM size distribution in Fig. 14c (solid rectangles and solid line). 

When this polydisperse sample adsorbed at the PS-air surface only large NPs, larger than ~ 80nm, 

remained at this surface (Fig. 14c, AFM size distribution (open rectangles)), thus confirming the 

value for Rmin. It is somewhat surprising that, for the AFM size distribution exhibited in Fig. 14c, 

even rafts of particles on the interface (Fig. 14d) did not contain any particles smaller than Rmin. 

The equations in this section are strictly valid only for single isolated particles. These equations 

do not preclude small particles, less than Rmin, within clusters. The absence of these small particles, 

within clusters, suggests that the particle-particle cohesive energy (Gcoh in Fig. 11) is much, much 

smaller than E (Eq. (26)). 

  ~ 1nN (Fig. 14b) is an order of magnitude larger than theoretical expectations arising 

from van der Waals contributions to the line tension (Secs. 2.1 and 2.3). This disagreement with 

theory is discussed in Sec. 3.1.3 together with a potential explanation.  

X-ray and neutron reflectivity techniques have also been employed to investigate the 

adsorption of nanoparticles at the air-water and water-hexane interfaces, and investigate the 

monolayer structure [102,103]. X-ray reflectivity has also been applied to measure the contact 

angle of iron oxide nanoparticles coated with poly(ethylene glycol) [104]. Recently Reguera et al. 

[96] presented an experimental method based upon neutron reflectivity. This method, as mentioned 

above, provides a route to the “in situ” measurement of the contact angle of small particles. In this 
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way it circumvents problems associated with indirect methods, which rely on the transport of 

monolayers to solid subtrates for later analysis. The method was illustrated to measure the contact 

angles of 7 nm diameter gold nanoparticles coated with octanethiol (OT) layers and mixtures of 

OT mercaptohexanol. The interpretation of the neutron reflectivity profiles requires a fitting to a 

geometrical model, which can be validated using atomistic computer simulations. 

 

3.1.2 Small spherical colloidal particles at liquid surfaces. 

As mentioned in Sec. 3.1, if the NPs are sufficiently small (R < Rgrav ~ 20nm), then NPs 

adsorbed at the surface are in thermodynamic equilibrium with NPs suspended in the bulk liquid 

solution. For thermodynamic equilibrium, the chemical potential of a colloidal particle at the liquid 

surface must equal the chemical potential of a colloidal particle in the bulk liquid phase. Hence, 

according to Prigogine and Marechal [105], 

)/exp(
11

kTE
b

b

s

s 



 






       (32) 

where s (b) is the surface (bulk) volume fraction of colloidal particles and E is given by Eq. (26). 

Additionally, the adsorbed NPs must also be in mechanical equilibrium at the surface i.e. the 

modified Young’s equation (Eq. (28)) is valid.  

 Wi et al. [31] used surface tension measurements to test the concepts implicit in Eq. (32). 

In this study the surface tension  of the NP solution was measured as a function of bulk NP 

concentration in the liquid for various n-alkane solvents, from n-nonane to n-octadecane at a 

temperature of 30oC. The NPs used in these experiments were 5nm diameter Au NPs ligated with 

dodecanethiol. Fig. 15a shows this functional dependence for a selection of n-alkane solvents. The 

surface tension results are complex. For pure n-alkanes, the surface tension increases with 

increasing n-alkane chain length (C18 > C16 > C12 > C10 > C9), as expected. However, at 

sufficiently high NP concentration (0.25 mg/mL) the surface tension dependence is disordered, 

specifically, C12 > C16 > C10 > C18 > C9. 
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To deduce whether or not these surface tension results are consistent with Eq. (32) one 

must first relate the NP surface volume fraction s to the solution surface tension . The most 

straight forward assumption is to assume the following constitutive equation 

solsNPs  )1(         (33) 

where the NP surface energy  

mmNcritSLSVNP /9.20~        (34) 

and sol is the solvent (i.e. pure n-alkane) surface tension. The critical surface tension, crit, defines 

a property of the terminal ligand group that coats the solid surface [80], specifically, the methyl 

terminal group (-CH3) for the current situation. Solvents with sol < crit (sol > crit) completely 

wet (partially wet) the solid surface with  = 0 ( > 0). Eq. (33) allows one to convert each  

value to s; thus, converting Fig. 15a to Fig. 15b. Fig. 15b exhibits a much more systematic trend, 

with increasing n-alkane chain length, than does Fig. 15a. 



(mN/m)

s

Fig. 15 (a) Liquid-vapor NP solution 

surface tension  as a function of 

bulk dodecanethiol ligated Au NP 

concentration for selected n-alkane 

solvents. Solid line: guide to eye. (b) 

Surface concentration s, deduced 

from Eq. (33), as a function of bulk 

NP concentration. Reprinted 

(adapted) with permission from [31], 

© (2011) American Chemical 

Society. 
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In order to understand how Eq. (32) may be used to interpret Fig. 15b, this equation can be 

rewritten more explicitly as 

  






 
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 Tk

bRhb
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NPsol
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.    (35) 

Additionally 

)cos1(  Rh ,        (36) 

2

1cos 









R

b
 ,        (37) 

and, according to Eq. (28), 

 2)/(1/cos1 Rbb sol   .      (38) 

Hence, when Eqs. (36) – (38) are substituted into Eq. (35) each (s, b) pair is a function solely of 

the lateral radius b. Thus, for each (s, b) pair in Fig. 15b one can determine the lateral radius b, 

or, equivalently the surface area a = b2. Fig. 16a shows a plot of a versus bulk NP concentration. 

Similarly, once b is known then  and  can be determined from, respectively, Eqs. (37) and (38). 

 and  are plotted as a function of bulk NP concentration for each n-alkane solvent in, respectively, 

Figs. 16b and 16c. Figs. 16a - 16c indicate that a, , and  are independent of the bulk NP 

concentration, thus, average values for each n-alkane solvent are displayed in Figs. 16d – 16f. a, 

, and  are characteristic parameters which define the positioning of individual NPs at the liquid-

vapor surface and, therefore, these three parameters are not expected to be a function of the bulk 

NP concentration, at least, for dilute NP concentrations. At higher NP concentrations NPs will 

exhibit surface clustering and the NP-NP cohesive energy Gcoh (Fig. 11) will play a role. The 

independence of a, , and on bulk NP concentration (Fig. 16a – 16c) may indicate that Gcoh plays 

a minor role relative to E (Eq. (26)). 

We note that  ~ 1pN and changes sign at C14 (Fig. 16e). The line tension magnitude found 

in this study agrees well with theoretical expectations, but is a thousand times smaller than the line 

tension determined in Sec. 3.1.1. This difference in line tension magnitudes found in these two 

studies is discussed in the next section. 
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3.1.3 Critique on spherical colloidal particles at liquid surfaces 

In this section we provide a critique on our views on the line tension associated with NPs 

at liquid surfaces. In Sec. 3.1.2, the line tension was deduced from surface tension measurements 

for the adsorption of dodecanethiol ligated Au NPs at the alkane-air surface. These results will be 

dependent upon the accuracy of the constitutive equation (Eq. (33)). Additionally, at high NP 

surface coverage, the single NP energy (Eq. (26)), used in Eq. (32), will require modification due 

to the cohesive energy between adjacent NPs (i.e. Gcoh in Fig. 11). Despite these deficiencies in the 

modeling, we believe that the magnitude of the line tension ││ ~ 1pN is approximately correct. 

An additional estimate for  can be obtained from the equation for Rmin (Eq. (31)). The surface 

tension results in Fig. 15a indicate that dodecanethiol ligated Au NPs do not adsorb at the nonane-

air surface. From Wi et al. [31], sol = 21.86 mN/m for n-nonane while  = 16.3o for a n-nonane 

droplet on a dodecylsilane coated silicon wafer. Hence, min = 9.45o from Eq. (30). Therefore, from 

Eq. (31)  = 0.4 pN where we have used Rmin = (2.5 + 1.7) nm, namely, the sum of the Au core 

radius and ligand length. These line tension results for dodecanethiol ligated Au NPs at the alkane-

air surface therefore agree with the line tension estimates from theory and from computer 

simulations (Sec. 2.1). This agreement should be contrasted with the line tension results in Sec. 

3.1.1 for dodecyltrichlorosilane ligated silica NPs at the PS-air surface where  ~ 1nN, which is at 

least an order of magnitude larger than the largest theoretical estimate. This line tension value is 

thought to be very accurate in both magnitude and sign because all of the experimental results in 

Fig. 14b and 14c agree precisely with all of the predictions arising from the modified Young’s 

analysis in Sec. 3.1.1 (Eqs. (28), (30) and (31)). Why should the line tension results for Au NPs at 

an alkane-air surface differ so significantly from the line tension results for silica NPs at a PS-air 

surface? We believe that the explanation arises from the difference in the ligand and solvent 

(d)

(e)

(f)

Fig. 16 (a) a = b2, (b)  and (c)  versus bulk NP concentration for various n-alkane solvents 

deduced from Eqs. (35) – (38). Average values for (d) a, (e)  and (f)  for each n-alkane 

solvent. Reprinted (adapted) with permission from [31], © (2011) American Chemical Society. 
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structure. In Sec. 3.1.2 the Au NPs were coated with an alkyl-like ligand (12 carbons long) which 

is very similar in nature to the alkane solvents in which these particles were dissolved in. Thus, 

the primary contributions to the line tension are expected to arise from the surface tension and van 

der Waals contributions included in the theory (denoted vdW), hence, the good agreement with 

theory. This should be contrasted with the silica NPs at a PS-air surface studied in Sec. 3.1.1. The 

silica NPs were coated with an alkyl-like ligand (12 carbons long), whereas, the PS ([C8H8]n) 

consists of a long linear carbon chain where a benzene ring is attached to every odd numbered 

carbon along this chain. Thus, the NP ligand coating and PS solvent possess rather different 

chemical structures. It is thought that an additional point contact contribution to the line tension 

(denoted atom), not accounted for within the mean field calculations, is responsible for the large 

line tension  ~ 1nN observed in Sec. 3.1.1. This point contact line tension contribution is expected 

to be important when the ligand and solvent are dissimilar in chemical nature. The magnitude of 

atom will be dependent upon the atomic structure of both ligand and solvent and how this atomic 

structure is able to reorient and reconfigure at the three-phase contact line in order to minimize the 

total free energy.  

Matsubara et al. have found evidence for a point contact line tension contribution, in the 

vicinity of an n-alkane surface freezing transition, for n-tetradecane droplets on an aqueous 

surfactant-air surface [106]. In this case, there is a discontinuity in surface structure at the air-water 

and air-oil surfaces which gives rise to this point contact line tension contribution. Du et al. [107] 

studied the Brownian diffusion of negatively charged carboxylate-modified polystyrene particles 

with diameters 24nm to 2000nm at the water-silicone oil surface. Their results could only be 

explained if a line tension  ~ -1.4 nN was present; such a line tension would arise from atom. The 

line tension significantly changes the contact angle of the very smallest particles at the liquid/liquid 

surface and hence influences the Brownian diffusive motion of these particles. 

 Rusanov, Shchekin, and Tatyanenko [108] and Schimmele, Napiórkowski and Dietrich 

[109] have criticized using the modified Young’s equation (Eq. (28)) to deduce the line tension  

They demonstrate for a liquid droplet on a solid substrate [108,109],  as well as, for a liquid droplet 

on a liquid surface [109] that, as all interfaces are diffuse, how one defines the placement of the 

“Gibb’s dividing surface” which separates phases (eg. the solid phase from the liquid phase, etc.) 

gives rise to additional terms in the modified Young’s equation, specifically, the “notional 

derivatives”  




d

d
 and 

db

d
. The line tensions inferred from the modified Young’s equation may 

therefore be affected by the notional shifts in the interface location. The good agreement between 

the experiments for silica NPs at a PS-air surface and the modified Young’s equation and 

associated equations (Figs. 14b and 14c), in the absence of any notional derivatives, suggests that 

the changes associated with these notional derivatives are small, at least, for this particular 

experiment. 
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 For ligated NPs, computer simulations have demonstrated that the ligated layer may under 

certain circumstances, for large ligand length to core diameter ratio, acquire liquid-like properties 

and deform at a surface [60] or, alternatively, exhibit clustering of adjacent ligands thus leading to 

a patchy ligand layer [110]. However, not all computer simulations display evidence for patchiness 

or liquid-like properties of the ligand layer [111]. If the ligand layer exhibited patchiness or liquid-

like properties then one might expect the experimental data for silica NPs at the PS-air surface to 

deviate from the predictions arising from the modified Young’s equation for a spherical NP at a 

liquid surface. No deviations were observed (Figs. 14b and 14c) thus indicating that the assumption 

of a spherical NP is most probably valid. The modified Young’s equation is known to depend upon 

shape. For example, the modified Young’s equation for a spherical colloidal particle at a liquid 

surface (Eq. (28)) differs from the modified Young’s equation for a liquid droplet at a solid surface 

(Eq. (55a)). Faraudo and Bresme [112-114] have used computer simulations to examine the 

stability of nonspherical NPs at liquid surfaces and found that oblate particles are far more stable 

than prolate particles, indicating the sensitive nature of the free energy to particle shape for 

particles at liquid surfaces. The thermodynamic model of Faraudo and Bresme has been used to 

estimate the line tension of PS and PMMA micrometer size ellipsoids at liquid-liquid interfaces 

[115]. It was found that the contact angle of the particles increased with particle aspect ratio. This 

effect was interpreted in terms of an effective line tension. Line tension values of order nN were 

reported which are in line with the observations for silica nanoparticles at the PS-air surface in Fig. 

14b. 

 The adsorption of NPs at LV surfaces, as described by the modified Young’s equation, 

exhibits a very distinctive shape (solid lines in Figs. 14a and 14b). The contact angle  that the 

NP makes with the LV surface, only deviates significantly from the macroscopic Young’s contact 

angle  for particle radii very close to Rmin. For particle radii R > 2Rmin, to a good approximation, 

 ≈  to within about ~5%.  is only a sensitive function of R for particle radii Rmin < R < 2Rmin. 

Of course, if R < Rmin, single isolated NPs are unstable at the LV surface and sink below this 

surface into the bulk liquid phase. Computer simulations [57-59] have determined line tensions of 

NPs at both LV and LL surfaces for particle radii in the range R ~ 1 to 2.5nm where the surface 

tension was 3mN/m (14mN/m) for the LV (LL) surface. Both negative and positive line tensions 

were observed where the line tension magnitude was measured to be │ │ ~ 1 – 10pN, in 

agreement with theoretical calculations (Sec. 2.1). Further, this order of magnitude for the line 

tension agrees with that one inferred from the molecular dynamics analysis of depletion forces of 

nanoparticles at fluid interfaces [35]. As Rmin scales directly with  (Eq. (31)), the use of such small 

particles in computer simulations necessarily means that these studies are only able to detect very 

small line tension magnitudes in the range found by theory. Namely, the detection of larger line 

tensions via computer simulations requires using larger particles because small particles, with R < 

Rmin, are unstable at the LV surface. 

 As mentioned in the preceding paragraph, for R > 2Rmin to a good approximation  ≈  

therefore from Eq. (26) one obtains for the attachment energy of the particle to the surface 
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min

22 2,sin2)cos1( RRRRE LVatt    .   (39) 

In the absence of a line tension, this reduces to the often quoted attachment energy (except for the 

negative sign) 

22 )cos1(   RE LVatt
      (40) 

which has a maximum when  = 90o [116]. attE  is the difference between the modified Young’s 

energy minimum and the bulk energy and one must supply at least this energy to remove the 

particle from the surface into the bulk liquid phase. (If a particle at the surface is removed into the 

bulk gaseous phase then –cos is changed to +cos in Eq. (40).) In reality one must supply more 

than this energy │ attE │ to remove this particle from the surface into the bulk liquid phase. 

According to Fig. 13b, one must supply a desorption energy  

attad EEE           (41) 

to remove a particle from the surface, which is larger than  │ attE │ because of the presence of 

the energy barrier. From Fig. 13b, the height of the energy barrier aE  is almost independent of 

the particle radius. One can obtain an estimate of aE  by noting that this energy barrier occurs at 

approximately /3 for R > 2Rmin, namely, in this region  ≈  and then the 140nm curve in Fig. 

13b is approximately sinusoidal up to  at the modified Young’s minimum. Therefore, from Eq. 

(26), to a good approximation 

min

222 2),3/(sin)3/sin(2))3/cos(1(2cos RRRRRE LVLVa    .      (42) 

These estimates for the adsorption Ea (Eq. (42)) and desorption Ed (Eq. (41)) energies to adsorb 

or desorb a particle from a liquid/vapor surface should provide reasonable estimates for most 

particles provided that R > 2Rmin. In the narrow particle range Rmin > R > 2Rmin one should return 

to Eq. (26) to more carefully estimate these adsorption and desorption energies. 

 

3.2 Liquid droplets at surfaces 

 The ideas set out in Sec. 3.1.1, for spherical colloidal particles at liquid surfaces, can also 

be applied to liquid droplets at a surface with only slight modifications. In this case, the energy of 

the liquid droplet is minimized by changing the droplet shape at constant droplet volume. The 

essential ideas are analyzed in detail for liquid droplets at a solid surface in Sec. 3.2.1. The more 

complex situation of liquid droplets at liquid surfaces is considered in a more cursory fashion in 

Sec. 3.2.2. 
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3.2.1 Liquid droplets at solid surfaces 

 In this section the influence of the line tension on a small droplet situated on a flat solid 

surface is considered, where the droplet dimensions are less than the capillary length -1 (Eq. (1)), 

thus, gravity can be ignored. This liquid droplet (Fig. 17a) possesses a contact angle , lateral 

radius r, height h, liquid-vapor radius of curvature and area denoted, respectively, by R and A. 

(The results in this section are also approximately correct for liquid droplets at liquid-vapor 

surfaces (eg. oil droplets at the water-air surface (Fig. 17b) in the presence of a surfactant [117], 

Sec. 3.2.2) provided that the liquid-vapor surface is approximately flat.) 

 

Following the analysis in Sec. 3.1.1, the energy of the liquid droplet at the solid-vapor surface is  

rrAE SLLVs  22         (43) 

while the energy of this droplet when completely removed from the solid surface (into the vapor 

phase) is 

2

1 rAE SVLVb            (44) 

where A1, the area of the LV surface, is related to the total oil droplet volume V via  

  3/12

1 36 VA  .        (45) 

Geometry provides the following interconnections between V, A, h, r, and R. 

6/)3(3/)3( 222 rhhhRhV   , (46)  

)(2 22 rhRhA   , (47) 

and 





R

A

r

h

Air

WaterOil

(a)

Vapor

Solid

Liquid

(b)

R




r

h
A

Fig. 17 (a) Liquid droplet on a flat solid substrate. Contact angle , liquid-vapor radius of curvature 

R and area A, lateral radius r, and height h. (b) Oil droplet at the water-air surface, which is 

assumed flat.  
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hrhR 2/)( 22  .        (48) 

As in Sec. 3.1.1 the important quantity to consider is the energy difference E = Es - Eb 

22

1 2)( rrrAAE SVSLLV            (49) 

which can be transformed to 

            (50) 

with spreading coefficient S (Eq. (4)). 

For the colloidal particle at a liquid surface (Fig. 12a) one examined how the energy E of 

the particle (Eq. (26)) varied as a function of the height h (or correspondingly contact angle ) of 

the particle above the surface. For a droplet at a solid surface one needs to consider the energy E 

(Eq. (50)) as a function of the contact angle  where the volume V of the droplet is fixed (i.e dV = 

0). For this situation the energy minimum is given by 

     (51) 

 

where, in deriving this equation, we have used the fact that  

]2)[(
2

0 22 drhrdhrhdV 


      (52) 

and dA1 = 0. 

As 

sin/ Rr          (53) 

and 

 sin/)cos1(  rh         (54) 

the modified Young equation given in Eq. (51) can be transformed into the better known equation 

rLV


  coscos        (55a) 

for the situation shown in Fig. 17a or, alternatively,  

rOW


  coscos        (55b) 
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for the situation shown in Fig. 17b. This modified Young’s equation describes how the droplet 

contact angle  changes, relative to its macroscopic value ∞, due to the presence of a line tension 

. Of course, in the limit of zero line tension ( = 0) or infinitely large droplet (r → ∞)  → ∞. 

This modified Young’s equation (Eq. (55a)) was first suggested without proof by Pethica [118] 

before subsequently being confirmed by Scheludko, Toshev, and Bojadjiev [32] and Pethica [119]. 

As in Sec. 3.1.1, one should also examine the second energy derivative, in order to deduce 

the stability of the droplet at the solid surface where [22] 

     (56a) 

 

     (56b) 

The second approximate equality (Eq. (56b)) is valid for flat droplets (i.e. h << r), near wetting, 

where we have used Eq. (51). 

 Eq. (55a) has frequently been used, in the past, to deduce the line tension  of liquid droplets 

on solid surfaces by examining the functional dependence of cos with 1/r (the inverse droplet 

radius) using either optical microscopy [10,47] or Atomic Force Microscopy [6,120] techniques. 

If the contact angle of the droplet is small then (monochromatic) optical interference fringes, 

observable within the droplet (Figs. 18a and 18b), can be used to accurately measure . For larger 

contact angle droplets, the contact angle can no longer be deduced using optical interference 

techniques, thus, alternative (optical) techniques must be used, for example, magnified shadow 

graphs of the droplet shape [121]. AFM techniques provide higher spatial resolution of the droplet 

shape but are less frequently used. Optical interference techniques are particularly useful for 

examining the variation in the line tension, in the vicinity of a wetting transition, where the contact 

angle is small. Wang, Betelu and Law [9,10] examined the wetting behavior of liquid droplets of 

n-octane or 1-octene on a n-hexadecane silanated silicon wafer using optical interference. As the 

droplets were near a wetting transition (Fig. 4a) their contact angle was small and interference 

rings could be observed when the droplets were viewed using monochromatic light (Fig. 18a). 

From a fit to the positioning of the interference maxima and minima one can obtain the contact 

angle (Fig. 18b). By condensing more liquid onto the droplet (at fixed silicon wafer temperature) 

one can study how the contact angle changes as a function of droplet size. According to the 

modified Young’s equation (Eq. (55a)), cos should vary linearly with 1/r where the slope is the 

line tension . This is indeed what is observed in Fig. 18c. By increasing the silicon wafer 

temperature the droplet contact angle decreases because one is approaching a wetting transition, 

hence,  can therefore be studied on approaching a first-order wetting transition. From data such 

as Fig. 18c one obtains a plot of  versus t = (Tw – T)/Tw (Fig. 19). As predicted via theory (Sec. 

2.3) the line tension  changes from negative to positive as one approaches a first-order wetting 
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transition. The line tension magnitude ~ 0.1 – 0.3 nN is similar in magnitude, or slightly larger, 

than the largest predictions that arise from theory. 

 

 

 

 

 

 

  

(a)

(b)

(c)

Fig. 18 (a) Optical interference fringes observed within an n-octane droplet deposited upon a 

hexadecyltrichlorosilane coated silicon wafer. (b) Fit of the maxima and minima interference 

fringes in deducing the droplet contact angle  in (a). (c) Plot of cos versus 1/r from which the 

line tension is deduced using Eq. (55a). Reprinted (adapted) with permission from [10], © (2001) 

American Physical Society. 

 

Fig. 19 Line tension  for n-octane or 1-

octene droplets on a hexa-

decyltrichlorosilane coated Si wafer near a 

first-order wetting transition. Reprinted 

(adapted) with permission from [9], © 

(1999) American Physical Society. 
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As discussed later (Secs. 3.2.2 and 3.2.3) there is an ongoing debate as to whether or not a 

droplet possessing a negative line tension can cause the three-phase contact line to become 

unstable. For a wide temperature range in Fig. 19, liquid droplets possess a negative line tension. 

Hence, one might wonder about droplet stability in this region. According to Eq. (56b), as S ~ -2 

x 10-4 N/m and  ~ -0.4 nN then the critical radius rcrit at which d2E/dr2 = 0 occurs at  

m
S

rcrit

6102~
6

5 


        (57) 

and, therefore, all of the droplets studied in Fig. 19 are stable (i.e. for all droplets r > rcrit and, hence, 

d2E/dr2 > 0). However, Eq. (56b) only provides information about the overall droplet stability of 

spherical capped shaped droplets, rather than the stability of the three-phase contact line to contact 

line fluctuations. Guzzardi, Rosso, and Virga [29] therefore examined the second variation of the 

free energy and demonstrated that, for the conditions in Fig. 19, the three-phase contact line is 

stable to sinusoidal fluctuations of this contact line (see Sec. 3.2.3). 

As discussed in section 2.1 computer simulation studies have followed the experimental 

approach, discussed above, to compute line tensions of droplets on solid surfaces [61-67]. The 

simulated line tensions in general involve either simple fluid droplets modeled with the Lennard-

Jones potential or water droplets. In the latter case studies, for water droplets at a carbon surface, 

the reported line tensions vary in the range 1-100 pN. In several of these investigations the 

curvature dependence of the surface tension is omitted and the surface tension is assumed to be 

the same as for a flat interface. This is expected to be a good approximation for large droplets 

however, for small droplets with nanometer radii, this approximation should be treated with 

caution. 

 

3.2.2 Liquid droplets at liquid surfaces 

In the previous section, the influence of line tension on a liquid droplet on a molecularly 

smooth flat solid surface was examined. For liquid droplets on liquid surfaces (eg. an oil droplet 

at the air-water surface), the situation is more complicated because of the curvature of the air-

liquid surface. In this case, the line tension influences the angles a and  in Fig. 20 according to 

the Neumann-Young equation [122] 

r
AWOWAO


a  coscos       (58) 
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where forces parallel to the air-water interface have been accounted for and it is assumed that the 

angle  ≈ 0. The angles a and , however, are difficult to measure independently. If these angles 

are sufficiently small, this equation can be transformed to [4] 

r
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coscos    (59) 

by taking into account forces normal to the air-water interface where the dihedral angle  = a + . 

Matsubara and coworkers [106,123-125] used interferometry to measure the dihedral angle 

 for n-alkane oil droplets at an aqueous surfactant air surface as a function of droplet radius r; 

thus, allowing the line tension to be determined using Eq. (59). They used the cationic surfactant 

alkyltrimethylammonium bromide (Fig. 21a) in their studies. This surfactant possesses a 

hydrophilic charged head group, which resides in the water phase, as well as, a hydrophobic alkyl 

tail, which avoids the water phase and protrudes into either the oil or air phase. Hence, this 

surfactant is found at both the water-air, as well as, water-oil interfaces. As the temperature T or 

surfactant molality m in the bulk water phase is changed, the two-dimensional (2D) surface film 

at the air-water surface can exist in either a 2D gaseous (G), liquid (L) or solid (S) state. Fig. 21b 

provides an example of this 2D surface phase diagram [22] for a n-hexadecane oil droplet (C16) 

in the presence of the surfactant dodecyltrimethylammonium bromide (DTAB) where the 

corresponding line tensions in the G and L phases, at room temperature, are shown in Fig. 21c 

[106]. The 2D film at the air-water interface adjoins the three-phase oil-water-air contact line and 

therefore has a significant influence on the line tension of this contact line. For example, the results 

in Fig. 21c demonstrate that when this 2D air-water film is in the G (L) phase the line tension is 

positive (negative). As discussed later in this section the sign of the line tension may significantly 

influence the macroscopic behavior of oil droplets at this aqueous surfactant air surface.  


OW


AO

AW

Fig. 20 Oil droplet (O) of lateral radius r at the air(A)/water(W) surface with interfacial tension 

ij, between two phases i and j, and line tension . The angles a,  and  are defined in the 

figure.  
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At lower temperatures when the 2D surface film freezes, this system develops considerable 

complexities because surface freezing transitions can occur at the air-water and/or air-oil interfaces 

depending upon the n-alkane and surfactant chain lengths. Matsubara and coworkers [106] have 

therefore conducted a systematic study of these effects as a function of both n-alkane and surfactant 

chain length. They studied the n-alkanes tetradecane (C14), hexadecane (C16) and octadecane 

(C18) and the alkyltrimethylammonium bromide surfactants DeTAB (C10S, which has an alkyl 

tail 10 carbons long), DTAB (C12S) and TTAB (C14S). These various choices give rise to 

differing surface phase transitions at either the water-air and/or oil-air interface. For sufficiently 

long n-alkane liquids (n > 14), the oil droplet undergoes a surface freezing transition at the oil-air 

surface from a surface liquid state (SL) to a surface frozen state (SF) [126] as the temperature is 

decreased below the surface freezing transition (Fig. 21e). The presence/absence of this surface 

freezing necessarily influences the line tension because the oil phase adjoins the three-phase oil-

water-air contact line. By selectively choosing differing alkyl surfactant chain lengths, combined 

with differing n-alkane chain lengths, one can obtain differing solid phases at the water-air surface. 

For example, for sufficiently short surfactant and n-alkane chain length (eg. TTAB-tetradecane) 

the mixture alkane/surfactant film transitions from a monomolecular liquid state L to a 

monomolecular solid state (denoted S1 in Fig. 21d) at the air-water surface. However, if the n-

alkane is sufficiently long (eg. DTAB-hexadecane) the air-water monomolecular mixed liquid 

state L now transitions to a bilayer solid state, denoted S2, which possesses a solid upper alkane 

monolayer atop a mixed liquid-like lower layer (Fig. 21d). For the DTAB-hexadecane system the 

SL → SF transition at the oil-air surface occurred at a similar temperature as the L → S2 transition 

at the water-air surface. Hence, it is difficult to separate out the effects of surface freezing at the 

oil-air surface from the liquid-to-bilayer solid transition happening at the water-air surface and the 

consequent influence on line tension behavior. Thus, another system was studied (DeTAB-

octadecane) where surface freezing occurs at the oil-air surface in the absence of any liquid-to-

solid transition at the water-air surface. The influence of these various solid surface phase 

transitions at both the oil-air and water-air surface and how they impact the line tension has 

recently been reviewed by Matsubara and coworkers [106] and will not be re-examined here. 
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A different aspect of this system is examined in the remainder of this section, namely, how 

the dynamics and stability of oil droplets at the aqueous-air surface are influenced by the sign of 

the line tension. As noted earlier, the line tension is positive (negative) in the G (L) phase (Fig. 

21c) where an explanation for the sign of the line tension in the G and L phases is provided in 

Takata et al. [124]. Droplets always coalesce (fragment) in the G (L) phase. Ushijima et al. [125] 

have speculated that this coalescence/fragmentation behavior could be caused by the sign of the 

line tension.  
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Fig. 21 (a) Chemical structure of cationic surfactant dodecyltrimethylammonium bromide 

(DTAB), (b) 2D surface phase diagram (molality m of DTAB versus temperature T) for a n-

hexadecane oil droplet (C16) at the aqueous surfactant air surface showing the gaseous (G), 

liquid (L) and solid (S) phases. Reprinted (adapted) with permission from [22], © (2015) 

American Chemical Society. (c) Variation of line tension with DTAB molality m for the C16 

+ DTAB system at room temperature, (d) schematic of surface phase transitions that may occur 

at the air-water interface for varying surfactant concentrations and temperatures, (e) schematic 

surface phase transitions that may occur at the air-oil surface for varying surfactant 

concentrations and temperatures where SL (SF) denotes a surface liquid (frozen) state. 

Reprinted (adapted) with permission from [106], © (2014) Elsevier. 



49 

 

 

Paneru et al. [22] have probed this coalescence and fragmentation behavior in more depth. 

Fig. 22 provides an example of coalescence in the G phase. For DTAB + hexadecane the liquid-

air surface is approximately flat [117], hence, the theory developed in Sec. 3.2.1 is approximately 

valid and can be used to understand the observed experimental behavior. For coalescence, both the 

two smaller pre-coalescence droplets, as well as, the larger post-coalescence droplet must be 

mechanically stable. In other words, d2E/dr2 > 0 where the second energy derivative is given in 

Eq. (56b). This inequality is certainly true in the G phase because  (~ 10pN) is positive and S (~ 

- 4mN/m) is negative. A second condition for coalescence is that the total energy decrease upon 

coalescence where, at the same time, the total oil droplet volume must remain constant. This 

condition can be encapsulated using the energy difference [22]  

  2/)12(4)12(32 3/2

1

3/1

121   rSrEEE     (60) 

which is the difference in energy between the larger droplet of energy E1, volume V1 and radius r1 

and the two smaller droplets each of energy E2 and volume V1/2. Therefore, for coalescence, we 

additionally require that E < 0. As S is negative and  is positive, in the G phase, this second 

requirement is also certainly valid. Additionally, as │S│r >> , the surface tension contribution is 

the primary component which causes coalescence. In the G phase all oil droplets coalesce such 

that, at the end of the experiment, one single large oil droplet remains at the aqueous-air surface. 

Fig. 22 Coalescence of n-hexadecane oil droplets in the G phase at an aqueous DTAB air 

surface. Scale bar = 100 m. Reprinted (adapted) with permission from [22], © (2015) 

American Chemical Society. 
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 The L phase behavior for DTAB + hexadecane is rather complex (Fig. 23). The hexadecane 

oil droplet, when first deposited upon the aqueous-air surface in the L phase forms a rather flat oil 

droplet many millimeters in diameter with an oil film thickness of the order of ~ 80nm where the 

periphery of the oil droplet is decorated with “petals” composed of valleys of oil (Fig. 23a). With 

increasing time this oil droplet spreads to a much thinner oil film and holes nucleate in this oil film 

where the periphery of these holes is decorated with petals (Fig. 23b). The hole diameter grows 

linearly with time at a growth velocity of ~ 117 m/s (Fig. 23c). Eventually the holes expand to 

such a diameter that overlapping holes collide, which leads to the complete destruction of the oil 

film into much smaller oil droplets, now only a few hundred microns in diameter. These smaller 

oil droplets are unstable and fluctuate rapidly in time over time scales of a few seconds and they 

break up into smaller unstable and metastable droplets (Fig. 23d). Unstable droplets either have a 

“rubber raft” shape, with a thinner central film and a thicker outer rim (Fig. 23d, t = 2.5s, right 

droplet), or a non-symmetric shape (Fig. 23e, upper inset). Metastable droplets possess a spherical 

cap-shape with circular interference rings (Fig. 23e, lower inset). The metastable droplets were 

(a) (b) (c)

(d) (e)

Fig. 23 Fragmentation behavior of hexadecane (C16) oil droplets at the aqueous DTAB air surface 

in the L phase. (a) Large ~3.5 mm diameter C16 droplet shortly after deposition. Oil “petals” 

decorate the three-phase contact line. (Scale bar = 1mm.) (b) C16 droplet in (a) spreads to a thin 

oil film. (Scale bar = 1mm.) Petal decorated holes nucleate in this oil film where these holes grow 

linearly with time as shown in (c). (d) Overlapping holes eventually destroy this oil film and the 

film breaks up into unstable fragmenting oil droplets. (Scale bar = 100 m.) (e) Droplet distribution 

time evolution for unstable (upper inset, crossed circles, r  100 m) and metastable droplets (lower 

inset, open circles, r ≤ 100 m). Metastable droplets eventually sink further into the water medium, 

as described in the text. (Scale bar = 100 m.) Reprinted (adapted) with permission from [22], © 

(2015) American Chemical Society. 
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used to measure the line tension, in the L phase (Fig. 21c), with use of the Neumann-Young 

equation (Eq. (59)). Large unstable droplets (Fig. 23e, circles with plus signs) evolve over time 

into metastable droplets (Fig. 23e, circles) where droplets with average radii mr 100  ( m100

) are unstable (metastable). Unstable droplets fluctuate rapidly on time scales of seconds (Fig. 

23d), whereas, metastable droplets are stable over time scales of many minutes. However, 

metastable droplets eventually sink below the aqueous-air surface into the water phase. This 

sinking of droplets into the aqueous phase can be qualitatively understood from Eq. (56b) which 

defines a critical radius 

m
S

rcrit 


80~
6

5
         (61) 

with d2E/dr2 = 0. This estimate was determined using  ~ -55pN and S ~ -5.6 x 10-4 mN/m in the 

L phase. Thus, spherical cap-shaped droplets with r > rcrit are mechanically stable as d2E/dr2 > 0, 

however, this does not necessarily imply that spherical cap-shaped droplets possess the lowest 

energy state. The experimental results indicate that “petal shaped” droplets and “rubber raft 

shaped” droplets must possess a lower energy than spherical cap-shaped droplets. Spherical cap-

shaped droplets with r < rcrit are mechanically unstable, as d2E/dr2 < 0, and this will be the reason 

why the metastable droplets exhibited in Fig. 23e eventually sink into the aqueous liquid phase, 

driven by line tension effects. (This effect is exactly analogous to the existence of an Rmin (Eq. 

(31)) for spherical colloidal particles at the liquid-air surface.) The density of hexadecane (H = 

0.77 g/cm3) is less than that of water (W = 1.0 g/cm3), hence, although the surface and line tensions 

cause these droplets to sink into the water phase, this effect is counterbalanced by the buoyancy 

and gravitational forces whose net effect is to cause these oil droplets to float. Thus, the oil droplet 

at the aqueous-air surface is somewhat like an iceberg where only a little of the oil protrudes above 

the liquid surface into the air phase.  

The calculations in Sec. 3.1.1, for a spherical particle at a liquid surface, allow one to 

estimate the protrusion height of the oil droplet into the air phase. As most of the oil is submerged 

below the water-air surface, this oil droplet can be approximated by a sphere of radius R. Eq. (27) 

determines the positioning of a spherical object at a liquid-vapor surface if surface and line tension 

terms are present. If the weight and buoyancy forces, acting on the particle, are included then Eq. 

(27) is modified to 

0
3

4
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


 (62) 

where H and W are, respectively, the hexadecane and water densities while  

)3(
3

1

3

4 23 hRhRVL          (63) 
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is the volume of the displaced liquid. A numerical solution of Eq. (62) gives h ~ 0.4 m for a 

droplet of radius R = 50m where an estimate for cos is obtained from the spreading coefficient 

(Eq. (5b)) while h, R and cos are interrelated via Eq. (36). In this calculation we have assumed 

that H = 0.77 g/cm3, W = 1.0 g/cm3,  = -55x10-12 N [124], S = -5.6x10-4 mN/m [22], and LV = 

71 mN/m [117]. This estimate for h (~ 0.4 m) agrees approximately with the experimental 

observations for the sinking of an oil droplet into the water phase when r < rcrit (see the movie 

“Disappearing single droplet” in Paneru et al. [22]). Note that Eq. (62) determines the mechanical 

equilibrium for a spherical droplet at the water-air surface in the presence of surface tension, line 

tension, buoyancy, and gravitational forces. The condition d2E/dh2 = 0 determines the minimum 

radius of the droplet Rmin below which all droplets detach from the water surface and become 

submerged within the aqueous phase. Eq. (62), however, does not determine the ultimate size of 

this oil-in-water micelle (within the bulk water phase). Browne et al. [127] describe a simple model 

that determines the thermodynamic equilibrium micelle size taking into account surface tension, 

bending energy, and electrostatic effects.  

 Finally, before completing this section, we note that the contact angles of cylindrical 

nanodroplets at liquid-liquid interfaces have been investigated using molecular dynamics 

computer simulations [128]. The system was modeled using Lennard-Jones fluids, and the 

spreading of the droplets was investigated by ystematically varying the interactions between the 

droplet and the liquid phases. Computed surface tensions and contact angles were used to test the 

Neumann triangle construction [51]. It was found that this construction reproduces accurately the 

spreading behavior inferred from the simulations, without the need for including line tension terms. 

The lack of an obvious line signature could be connected to the small value of this quantity. The 

line tension of the non-deformable nanoparticles adsorbed at Lennard-Jones fluid interfaces is of 

the order of pN.  From the Neumann-Young equation (Eq. (58)), the influence of the line tension 

can be estimated by considering 1 − 𝜏/(𝑟𝜎𝐴𝑊). For 𝜏~𝑝𝑁, r~1 nm, and 𝜎𝐴𝑊~20mN/m we obtain 

𝜏/(𝑟𝜎𝐴𝑊)=0.05, which is a small correction, and therefore this explains the good agreement 

between the simulated contact angles and the Neumann construction. It would be very interesting 

to explore other interfaces (e.g. carbon-water), which involve different type of interactions, and 

for which larger estimates of the line tension (10-100 pN) have been reported [64-67]. 

 

3.2.3 Critique on liquid droplets at surfaces: negative line tensions and contact 

line stability/instability 

 In Sec. 3.2.1 the line tension for small (6 – 30 m radii) n-octane or 1-octene droplets on a 

solid surface were observed to change from a negative line tension to a positive line tension on 

approaching a first-order wetting transition (Fig. 19). These observations confirm the first-order 

wetting predictions in Sec. 2.3. However, other theoretical predictions in Sec. 2.3 for (i) the 

variation in the boundary tension on approaching a prewetting transition (Fig. 9) and (ii) the 
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variation in the line tension on approaching a critical wetting transition (Fig. 10) still remain 

untested. 

 Sec. 3.2.2 summarizes experimental observations for oil droplets at an aqueous surfactant 

air surface. In Sec. 3.2.2, oil droplets possessing a positive line tension are stable and coalesce as 

a function of time (Fig. 22). This behavior should be contrasted with oil droplets possessing a 

negative line tension. Two types of behavior were observed for negative line tension droplets (Fig. 

23e): (a) sufficiently large droplets with average lateral radius r > 100 m were unstable, exhibited 

“petal” or “rubber raft” shapes and fragmented into smaller droplets, whereas, (b) smaller droplets 

(r < 100 m) were metastable and eventually sunk into the water medium with only a little of the 

oil droplet protruding above the water surface where surface tension, line tension, gravitational, 

and buoyancy forces must be taken into account. 

 As eluded to earlier (Sec. 1), there has been considerable debate in the theoretical literature 

as to whether or not a negative line tension can lead to an instability in the three-phase droplet 

contact line [28,40-44]. Droplets possessing a negative line tension were observed in both Secs. 

3.2.1 and 3.2.2. Are these observations consist with theory? In Eq. (56) the second energy 

derivative for a spherical cap shaped droplet on a flat surface was determined. This second energy 

derivative only provides information about the stability of the droplet as a whole, relative to this 

droplet being submerged in one or other of the bulk phases. In order to understand the stability of 

the three-phase contact line of a liquid droplet one must consider the second variation of the 

energy. Rosso and Virga [26] and Brinkmann, Kierfeld and Lipowsky [27] have used the second 

energy variation to study contact line stability for liquid filaments on a solid substrate where there 

are regions of stability, as well as, regions of instability when the line tension is negative. Of 

relevance to the current review, in this regard, is the work of Guzzardi, Rosso and Virga [29] who 

studied three-phase contact line stability for spherical cap shaped droplets on a solid surface. Fig. 

24 is taken from this publication (their Fig. 7) which plots *log10   versus 
cos  where the 

reduced line tension 

3 /3
*






VLV

         (64) 

and the lines are residual stability curves with index from mrs = 2 (lower curve) to 100 (upper 

curve) for droplets possessing a negative line tension. The higher the residual stability index, the 

more stable is the droplet to sinusoidal perturbations of the three-phase contact line. The pluses 

are experimental data from Wang, Betelu and Law [10] for negative line tension n-octane droplets 

on a hexadecyltrichlorosilane coated silicon wafer at various temperatures approaching a first-

order wetting transition (Sec. 3.2.1 and Fig. 19 in this review). Most of this data lies near a curve 

with residual stability index mrs = 50, hence, these droplets are highly stable to sinusoidal 

fluctuations of the three-phase contact line. 
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One might wonder whether or not this contact line instability theory of Guzzardi, Rosso 

and Virga [29] could qualitatively explain the experimental observations in Fig. 23e where droplets 

with radii r > 100 m (r < 100 m) are unstable (metastable)? In applying the Guzzardi, Rosso and 

Virga theory one must keep in mind that their theory is strictly applicable only for liquid droplets 

situated upon a solid substrate, whereas, the data in Fig. 23e is for an oil droplet at the aqueous-air 

surface (where this surface is almost flat). We will ignore this technicality here. For this system, S 

= -5.6x10-4 mN/m, OW = 30 mN/m, and  = -55 pN, therefore, 

99998.01cos 

OW

S


 ,       (65) 

the reduced line tension 
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




VOS

      (66) 

for droplets with a radius r ~ 100m and height h ~ 2.3 m, and 

Fig. 24 Stability diagram for liquid droplets on a solid substrate where * is the reduced line tension 

(Eq. (64)) while the lines correspond to a residual stability index mrs of 2 (lower curve), 5, 10, 20, 

30, 40, 50, 70 and 100 (upper curve). The pluses are from experimental data for n-octane droplets 

on a silane-coated substrate [10]. Reprinted (adapted) with permission from [29], © (2006) 

American Physical Society. 
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3.4*log10   .        (67) 

Eqs. (65) and (67) would correspond to a point lying approximately on the unstable-residual stable 

boundary on Fig. 24. At fixed cos, if the volume V is increased then –log10│*│ also increases. 

Hence, the Guzzardi, Rosso and Virga theory seems to indicate that larger droplets are more stable 

than smaller droplets, which disagrees with the observations in Fig. 23e. The reason for this 

discrepancy between the Guzzardi, Rosso and Virga theory and experiment is not understood at 

this time. 

 A phenomenological theory of Clarke [40,41] considers sinusoidal perturbations of the 

three-phase contact line, in a manner similar to Guzzardi, Rosso and Virga [29]. The Clarke theory 

qualitatively explains the contact line instabilities observed in Fig. 23, as described below. Clarke 

considers sinusoidal contact line fluctuations at a three-phase contact line consisting of either two 

fluid phases and a solid phase [40], or, three fluid phases [41]. Although the later work [41], 

involving three fluid phases, is more consistent with the experimental geometry actually used in 

Sec. 3.2.2 (Fig. 20), this geometry involves experimental parameters which are more difficult to 

assess. Therefore, akin to the approximation used in Fig. 17b, the earlier Clarke publication [40] 

(for two fluid phases and a solid phase) is used to estimate the contact line fluctuation wavelengths 

which are unstable. A contact line fluctuation of wave vector q and amplitude q possesses an 

energy  
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where W, W, and Wg are the energies that arise from, respectively, line tension, fringe elasticity 

[50], and gravitational contributions. Here 
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Therefore, for a negative line tension , fluctuations possessing sufficiently large wave vectors q 

are unstable and grow because W(q) is negative. (When W(q) is negative, it is energetically 

favorable to make the amplitude of this fluctuation (q) larger because this decreases the overall 

energy of the system.) As a first approximation, ignoring the gravitational term, there is a critical 

wave vector  
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above which all wave vectors are unstable. Hence, for  = -55 pN, S = -5.6x10-4 mN/m, and OW 

= 45 mN/m the critical wavelength crit ≈ 300 m. This critical wavelength is of order the size of 

the instabilities observed in Fig. 23a and 23d (t = 0 s). Wavelengths  less than crit are unstable 

(i.e. q larger than qcrit are unstable) and the Clarke theory therefore also qualitatively explains the 

appearance of petals at hole boundaries in Fig. 23b. Inclusion of the gravitational term in Eq. (68) 

does not significantly alter the magnitude of the critical wavelength crit. Unfortunately, a 

quantitative comparison between experiment and theory is not yet possible because the Clarke 

theory [40] only considers the energy of a fluctuation of wavevector q, where all wavevectors q 

greater than qcrit are unstable (and grow). This theory needs to be extended to include fluid transport 

where this fluid motion is opposed by the fluid viscosity; a “fastest” growing wavevector qfast (> 

qcrit), possessing a characteristic time scale, would then arise to dominate the three-phase contact 

line instability (in analogy to the considerations of Vrij [129] and Vrij and Overbeek [130] who 

examined the instability process that occurs in thin film rupture). The differing theoretical 

approaches of Clarke [40,41] and Guzzardi, Rosso and Virga [29] provide valuable insights into 

how sinusoidal perturbations of the three-phase contact line give rise to a contact line instability 

when the line tension is negative. An examination of the interconnection, similarities, and 

differences between these two theoretical approaches would prove useful. 

 

3.3 Droplet nucleation at surfaces 

3.3.1 Nucleated wetting 

If SV  > SL + LV then, at equilibrium, a surface is covered by an equilibrium liquid 

wetting layer of thickness lw given by Eq. (16b) where the surface potential V(l) is depicted in Fig. 

5c. If the system initially starts in the metastable SV state, how does this system evolve to the 

equilibrium wetting layer? The system must first nucleate droplets at the surface. These droplets 

eventually coalesce into a liquid layer of thickness l. If l < lw then one will observe layer growth 

with time (Fig. 25a) [131]. If, however, l > lw then this liquid layer must undergo a hydrodynamic 

instability to reduce its thickness to lw [132]. 

The surface nucleation process, at a metastable surface, invariably involves the line tension 

. Law [13,133] studied this surface nucleated wetting process using a critical binary liquid mixture 

of the two liquids, acetone and hexadecane. This mixture was prepared at the critical composition 

which has a hexadecane volume fraction vc ≈ 0.5 and critical temperature Tc = 31.1 oC. For T > Tc 

the system is in the one-phase region where acetone and hexadecane are completely miscible. As 

the temperature is lowered below Tc the system undergoes a second-order phase transition at Tc 
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and phase separates out into a lighter hexadecane-rich a phase and a heavier acetone-rich  phase. 

If Tc > T > Tw then, at equilibrium, one will find a  wetting layer at the a-air (av) surface (Fig. 

25b).* In order to study the formation of this equilibrium wetting layer, the system was first 

prepared 10mK above Tc and then quenched to various temperatures T below Tc, but above the 

wetting transition temperature Tw. The system phase separates into bulk a and  phases (Fig. 25b) 

with compositions governed by the reduced temperature t = (Tc – T)/Tc. The av surface is in a 

metastable (“critical adsorption”) state [133] and it remains in this state until a  droplet nucleates 

at this surface at an incubation or nucleation time N. In order to study this surface nucleation 

process a focused laser beam was reflected off this liquid-air surface and the ellipticity   was 

measured. For a uniform film   provides a measure of the film thickness l. If the surface is 

decorated with droplets then    will be very noisy. Fig. 26a and 26b provide two examples of   

measured as a function of time. In Fig. 26a the system has been quenched 0.013oC below Tc, into 

the two-phase region; the surface remains in the metastable critical adsorption surface state until 

the nucleation time TN. After time TN the film thickens continuously where at late times it saturates  

 

.*The phase diagram for a critical binary liquid mixture is completely analogous to the phase 

diagram for a critical liquid mixture (Fig. 3a) except that the density  is replaced by the volume 

fraction v of one of the components of the critical binary liquid mixture [73].  

T > Tc
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

Metastable

surface 
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wetting layer

Layer growthDroplet nucleation
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lwl

T  > T > Tc w T  > T > Tc w

Fig. 25 (a) Schematic evolution of an equilibrium wetting layer on a surface. Droplets nucleate on 

a metastable surface, coalesce to a layer which then thickens to its equilibrium thickness lw. (b) In 

practice, a metastable surface state can be prepared as follows. At a temperature above the critical 

temperature Tc, a critical binary liquid mixture exists in the one phase region g (left). This system 

is quenched into the two phase region, with a and  phases, but above the wetting transition 

temperature Tw. The surface of this system is metastable (middle). At equilibrium the surface in 

contact with the air evolves to an equilibrium wetting layer with composition  (right). 
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to a constant value film thickness. Rather differing behavior can be observed in Fig. 26b where the 

system has been quenched 0.668oC into the two phase region. The systems remains in the 

metastable critical adsorption state until time TN (region A). At TN droplets nucleate on the surface 

and the ellipticity becomes very, very noisy (region B). At late times these droplets coalesce into 

a uniform film (region C) and, thus,   settles down to a constant value. In Fig. 26c the nucleation 

TN Time (x 10   s)4TN

(x 10    )-3



T    (s)N

(b) T = 0.668  Co

(c)

CA B

t

o(a) T = 0.013  C

Fig. 26 Nucleated wetting of a critical acetone-hexadecane mixture. (a) Ellipticity  from the 

liquid-vapor surface as a function of time. The system is quenched (at time 0s) from the one-phase 

into the two-phase region to a temperature T = Tc – T = 0.013oC below Tc. At nucleation time TN 

a uniform film nucleates and grows. Reprinted (adapted) with permission from [133], © (1992) 

American Physical Society. (b) Corresponding behavior for a quench to a temperature 0.688oC. A 

= metastable critical adsorption surface state, B = surface droplets at liquid-air surface, C = droplets 

have coalesced to a uniform wetting film. (c) Plot of nucleation time TN versus reduced 

temperature t = (Tc – T)/Tc. Reprinted (adapted) with permission from [13], © (1994) American 

Physical Society. 
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time TN is plotted as a function of reduced temperature t for many different quench experiments. 

In order to interpret this TN data one must have a model for the surface nucleation process. 

The energy for this nucleated droplet is given approximately by [13] 

gHVhrArrSE   222 /2      (71) 

The first two terms on the right are the well-known surface and line tension contributions while 

the third and fourth terms are, respectively, a van der Waals estimate and gravitational contribution 

where H is the height at which the  droplet is above the bulk  phase (i.e. vertical height of a 

phase). Here  =  – a is the difference in densities between the  and a phases while the 

Hamaker constant A occurred previously in Eq. (8a). Eq. (71) is very similar to Eq. (50) except 

that in Eq. (71) we have assumed that h is very small because the nucleating droplet is in the 

wetting region (where the contact angle will be exceptionally small).Of course Eq. (50) describes 

a macroscopic droplet and, therefore, the van der Waals term can be neglected. For nanoscopic 

nucleated droplets (Eq. (71)) including a van der Waals term is necessary in order to capture all of 

the essential physics. The volume of this droplet can be approximated as 

2/2hrV           (72) 

which corresponds to Eq. (46) with the approximation that h << r. The analysis for nucleating 

droplets necessarily closely follows the analysis in Sec. 3.2.1 (for liquid droplets on a solid 

surface). For a given droplet volume V, the droplet will change its shape at constant V so that the 

droplet is in mechanical equilibrium and possesses the minimum energy. Hence, 

0/ drdE          (73) 

where, together with dV = 0, from Eqs. (71) and (72) leads to 

0/3/ 2  hASr .        (74) 

Eq. (74) describes how the presence of a line tension  changes the shape of this nucleating droplet. 

This equation is completely equivalent to the modified Young’s equation (Eq. (51)) for h ~ 0 

together with a van der Waals contribution. It is important to note that the van der Waals interaction 

plays a central role in this nucleation process because, as h is small, the van der Waals contribution 

in Eq. (71) will be large. Any droplet nucleation calculations, which omit this van der Waals 

interaction term, exclude an essential component of the physics. Various limiting forms of Eq. (74) 

have appeared in the literature in the past. For example, if A = 0, then Eq. (74) reduces to the two-

dimensional analogue of the Laplace equation [134,135] which we have already encountered in 

Eq. (6). By contrast, if  = 0 in Eq. (74), then the droplet thickness 

S

A
h

3
          (75) 
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which has been used to estimate the thickness of mesa shaped droplets spreading upon a surface 

[50].  

 Determination of the nucleation time TN follows from Eqs. (71), (72), and (74). We sketch 

the essential ideas behind the calculation here where the details are given in Law [13]. Eq. (72) 

can be used to eliminate r from Eq. (71) so that E can be expressed as a function of h and V, 

namely, E(h,V). Similarly, but mathematically this is more complicated, Eq. (74) can be used to 

eliminate h from this equation, thus, now E(V). Physically, E(V) represents the minimum energy 

for that particular volume V because of the use of Eq. (74). In classical nucleation theory there is 

a critical volume Vc above which droplets grow (i.e. for V > Vc, dE/dV < 0) and below which 

droplets evaporate (i.e. for V < Vc, dE/dV > 0). Hence, the critical volume Vc is determined by the 

condition that 

0
)(


VcdV

VdE
.         (76) 

Eqs. (6) and (7) in Law [13] provide a rather complicated expression for Vc. The energy to nucleate 

a droplet of volume Vc is therefore determined by substituting this expression for Vc into E(V), 

specifically, 

 OO

x

c
CtS

t
VE


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






1

22

0)(        (77) 

where Co is a constant given in Law [13], t = (Tc –T)/Tc is the reduced temperature,  (~ 0.33) and 

1 (~ 0.83) are critical exponents, while o and x are the amplitude and critical exponent for the 

line tension. Namely, in Eq. (77) it has been assumed that  = ot
x and S = Sot

1 and, actually, the 

experimental nucleation data discussed below cannot be explained without these assumptions. The 

probability for nucleating a droplet of volume Vc is therefore given by 

]/)(exp[~ kTVEp c         (78) 

where kT is the thermal energy at temperature T with k the Boltzmann constant. The nucleation 

time measured in experiments TN ~ 1/p and, hence, 

]/)(exp[ TkVEAT BcoN         (79) 

where Ao is a fitting constant (proportional to the inverse attempt frequency for nucleation). The 

solid line in Fig. 26c is a best fit to the experimental TN data where o ~ 1 pN and x = 0.76 ± 0.02. 

The amplitude of the line tension o agrees with theoretical expectations (Sec. 2.3). The value of 

the critical exponent x is still in need of a theoretical explanation. 
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 The nucleation of droplets at a surface can occur via either homogeneous or heterogeneous 

nucleation. In homogeneous nucleation the nucleation process is induced by the underlying 

thermal fluctuations present in all systems at a finite non-zero temperature T. Heterogeneous 

nucleation originates from some other system dependent process which influence the attempt rate 

Ao in Eq. (79). Law and Pak [136] have demonstrated that a small transverse gradient T ~ 

mK/cm, which in practice are extremely difficult to eliminate, is the cause for the heterogeneous 

nucleation of surface droplets thus leading to Fig. 26c. Small transverse gradients give rise to 

convective flow in the a phase of Fig. 25b, thus, transporting small nuclei of the  phase to the 

air-liquid surface which in turn influences the attempt rate Ao. Law and Pak [136] found that Ao ~ 

(T)-1, which supports the idea that it is the surface flow with velocity v ~ T which is inducing 

this heterogeneous surface nucleation process. 

 

3.3.2 Critique on the nucleation route to line tension 

 Blossey and Bausch [137-140] and Blokhuis [134] have considered the nucleation of 

droplets at a metastable surface from a theoretical perspective. Their considerations are similar to 

those presented in Sec. 3.3.1 although not necessarily with all of the energy terms considered 

therein. Interested readers should refer to these authors for their perspective on the nucleation route 

to line tension. 

 A line tension contribution has been used to explain the experimental nucleation results for 

a number of other systems. Hienola et al. [141] studied the heterogeneous nucleation of n-nonane, 

n-propanol, and their mixtures on silver particles possessing radii in the range 3 – 13nm. Their 

experimental results were explained using classical nucleation theory supplemented with a line 

tension term. The line tension was negative for all particle sizes varying from  ~ -0.1pN, for the 

smallest particles, and increasing to  ~ -0.4nN, for the largest particles. Guillemot et al. [30] 

studied the drying dynamics of hydrophobic cylindrical porous silica material with radii 1-2nm 

filled with liquid water under high pressure. The pores empty when the pressure is lowered. The 

drying pressure is interpreted via thermally activated vapor bubble nucleation where a line tension 

is required to quantitatively explain the experimental data with  ~ -0.3 nN. The presence of a line 

tension, of this magnitude, could explain the high stability of nanobubbles at the interface between 

water and a hydrophobic surface [30]. 
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4 Gravitational line tension contribution for millimeter-sized droplets 

Perhaps the greatest controversy in this field is the observation of very large positive line 

tension values grav,expt ~ 1N, measured by Neumann and coworkers [121,142-146] and Drelich 

and Miller [147,148] (see David and Neumann [38] for a summary), which are at least 4 orders of 

magnitude larger than the largest values predicted via mean field theory, where │vdW,th│ ~ 1-100 

pN (Sec. 2.1). The line tension subscripts, in the previous sentence, denote the (perceived) origins 

for each of these line tension contributions. The mean field estimates for the line tension vdW,th 

originate via consideration of surface tension and van der Waals interactions in the vicinity of an 

interface (Sec. 2.3). grav,expt has been measured for large millimeter-sized liquid droplets on a solid 

surface. At such length scales, of order the capillary length -1 ~ 1mm (Eq. (1)), the gravitational 

potential should be included within the line tension calculation. 

De Gennes, Brochard-Wyart and Quéré [50] have estimated the gravitational contribution 

to the line tension grav  for liquid puddles on a solid substrate using a generalization of the 

“gradient-squared approximation” [149] contained in Eq. (21).  In this generalization, valid for 

arbitrary sloped droplets, the line tension functional for liquid puddles is 

   


 







 ))((

2

1
1)/(1)(ˆ 2 xlegdxdldxxl LV     (80) 

where the gravitational interaction has been included whereas the van der Waals interaction has 

been omitted (as this later contribution is negligible at millimeter length scales). Here,  is the 

liquid density, g the acceleration due to gravity, and e is the thickness of the puddle. (In the limit 

of small droplet slopes, dl/dx << 1, Eq. (80) reverts to the gradient-squared approximation of Eq. 

(21).) Minimization of Eq. (80), with respect to l(x), provides an estimate for grav  

Npuddle LVgrav 


 10~
2

cos1
3

4
)( 31 








 

.    (81) 

However, )( puddlegrav should not be compared with grav,expt, mentioned above, which was 

measured for ~1-5 mm radii sessile droplets on a solid surface, as these liquid droplets are not 

strictly puddles. One can obtain an estimate for )(dropletgrav  by incorporating the gravitational 

contribution into the squared-gradient expression for the line tension (Eq. (22a)). Specifically, in 

this case, the gravitational surface potential [150,151] 

2

2

1
)( glSdropletVgrav         (82) 

and, therefore, Eq. (22a) becomes 
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Eqs. (1) and (5b) have been used in deriving Eq. (85). Thus, from Eq. (83b), 

)86(10~)( Ndropletgrav    

where the capillary length mm1~1 , droplet height mml 1~max , density 
3/1~ cmg  and 1~C  

were used in obtaining this estimate.  

This squared-gradient estimate for )(dropletgrav  (Eq. (83b)) is strictly valid only when 

dl/dx << 1. This result is in need of generalization to arbitrary dl/dx (akin to Eq. (80)), as the line 

tension experimental measurements for millimeter-sized droplets have in general possessed large 

contact angles ( ~ 90o). It would be surprising if such a generalization to arbitrary dl/dx changed 

the order of magnitude of grav ~ +10 N (Eqs. (81) and (86)) significantly. We note that 

)(dropletgrav  (Eq. (83b)) is strictly positive, in agreement with experiments for tgrav exp, . 

Ndropletgrav  10~)(   is closer in magnitude to the experimental values measured for 

millimeter-sized droplets ( Ntgrav  1~exp,  ) compared with thvdW , , however, )(dropletgrav  and 

tgrav exp,  still differ by an order of magnitude. We believe this discrepancy may arise from the 

experimental determination of tgrav exp,  where the authors have used the modified Young’s 

equation given in Eq. (55a) to determine tgrav exp, . Eq. (55a) is strictly valid only for liquid droplets 

much smaller than the capillary length -1 (Eq. (1)) where the gravitational energy can be ignored. 

For large millimeter-sized liquid droplets a gravitational energy should be added to Eq. (43) and 

the energy minimized. Shapiro et al. [152] have partially carried out this calculation (in the absence 

of a line tension term and assuming spherical cap shaped droplets). They find that 
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where R is the radius of the liquid-vapor surface of the droplet. This equation needs to be 

generalized to include a line tension contribution. A likely generalization is 

   (88) 

 

obtained by combining Eqs. (55a) and (87). Ansatz Eq. (88) reproduces the correct limits when 

either g  0 or   0. The experimental contact angle data for millimeter-sized droplets should 

be compared with Eq. (88) in order to deduce the line tension . However, in doing so, one must 

keep in mind that Eq. (88) assumes that the spherical cap approximation is valid. Ideally one should 

derive the correct modified Young’s equation for millimeter-sized droplets in the presence of 

surface tension, line tension, as well as, gravitational contributions without assuming a spherical 

cap approximation [34]. 

 

5 Summary and discussion of line tension effects 

This review summarizes our views on the line tension, or, energy per unit length associated 

with three-phase contact lines, specifically, solid-liquid-vapor and liquid-liquid-vapor contact 

lines. The traditional view has been that the line tension arises from a functional minimization of 

surface tension and van der Waals interactions in the vicinity of a three-phase contact line (Sec. 

2.3). Such a minimization leads to a line tension of magnitude │vdW │ ~ 1 – 100 pN which is 

important on nanometer length scales. Although a number of experiments have found line tension 

magnitudes in agreement with these theoretical estimates, numerous other experiments measured 

significantly larger line tension magnitudes, sometimes, many orders of magnitude larger. This 

disagreement between theory and experiment has led to significant controversy and debate 

concerning the reliability of many line tension measurements. Computer simulation studies have 

also reported values in this range (1-100 pN). Most of the computer simulation data, for 

nanoparticles at fluid interfaces and droplets at solid surfaces, are in the range 1-10 pN. Larger 

computer simulation values of up to ~ 100 pN have been reported for water droplets at a carbon 

surface. 

Recent work, as summarized in this review, indicates that the line tension is far more 

complex and interesting than this traditional view point. Differing physical phenomena, at 

differing length scales, contribute to the line tension. At atomic length scales, the re-orientation 

and re-organization of sub-molecular groups, in order to minimize their energies in the vicinity of 

a three-phase contact line, contribute to the line tension. This contribution is expected to be 

particularly important if dissimilar surfaces meet at a three-phase contact line. Atomic force 
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microscopy experiments provide evidence for this atomic scale contribution to the line tension 

where the magnitude of this contribution │atom│ ~ 1nN (Secs. 3.1.1 and 3.1.3). As far as the 

authors are aware, no theoretical studies of these sub-molecular contributions to the line tension 

are currently available. If similar surfaces meet at a three-phase contact line then atom is expected 

to be unimportant and the van der Waals contribution to the line tension vdW, at nanometer length 

scales, is expected to play the dominant role provided that the object under study is not too large. 

vdW can be of either sign, determined by the shape of the interfacial potential (Sec. 2.3). For large 

objects of order the capillary length -1 ~ 1 mm (Eq. (1)), the gravitational contribution grav (~ 1-

10 N), which is always positive, dominates the line tension (Sec. 4). Provided that each line 

tension contribution is independent, the total line tension is 

gravvdWatomtot   .       (89) 

Table 1: Line tension contributions 

 Magnitude  Sign 

 

Length scale 

of phenomena 

Line tension 

length,    

Review 

sections 

Atomic, 

atom 

~ 1 nN  ~ 0.1 nm ~ 10-7 m 3.1.1, 

3.1.3 

Van der 

Waals, vdW 

~ 1 – 100 pN + or 

- 

~ 1 – 100 nm ~ 10-9 m 2.3, 3.1.2, 

3.3.1 

Gravity, 

grav 

~ 1 – 10 N + ~ 1 mm ~ 10-4 m 4 

 

Table 1 provides a summary of these various line tension contributions, including their magnitude 

and sign, the length scale of the respective physical phenomena, as well as, the “line tension 

length”  = │/│ (Eq. (2)) below which the line tension will play a significant role. In this 

estimate for  it is assumed that the surface tension  ~ 20 mN/m. Fig. 27 (solid lines) provide a 

pictorial overview for the various spatial scales at which the line tension lengths atom, vdW, and 

grav are expected to be important. It is therefore perhaps not so surprising that line tension effects 

of differing magnitudes (Table 1) measured over many different length scales (Fig. 27) have been 

observed. One should keep in mind that the line tension length  estimates, contained in Table 1, 

are strictly valid only if one is far from any wetting transition. Near a wetting transition the 

“spreading coefficient” line tension length S = │/S│ (Eq. (6)) must be used. For example, when 

S  0 (eg.  ~ 1o then S ~ -3 N/m), the van der Waals line tension length may become very, 

very large, as depicted by the dashed line in Fig. 27 (vdW(S0)). 
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 A coherent picture of the three-phase line tension magnitude and sign has now emerged. 

Any physical phenomena which modifies either the interfacial potential V(l(x)) (eg. van der Waals, 

electrical double layer, gravitational interactions, or surface phase transitions, such as, the wetting, 

prewetting, or surface freezing transition) or the local atomic structure at a three-phase contact line 

will influence the line tension associated with this contact line. In this review we have mainly 

discussed the influence of the atomic, van der Waals, and gravitational interactions of uncharged 

fluids upon the line tension either near or far from a wetting transition, or, near a bulk critical point. 

Ions in solution are predicted to influence the line tension at three-phase contact lines [153-155]. 

Matsubara, Takiue, and Aratono and coworkers [123-125,156] have extensively studied the 

influence of cationic surfactants on the line tension for n-alkane oil droplets at an aqueous-air 

surface. They investigated the influence of numerous parameters including surfactant 

concentration and chain length, n-alkane chain length, temperature, and the presence of surface 

freezing on the line tension, as summarized in a recent review [106]. A profitable area of 

continuing theoretical and experimental study would be to obtain a better understanding of atom, 

as only one experiment [85] has quantitatively explored atomic scale contributions to the line 

tension. Lineactants [157], or line active molecules which preferentially adsorb at a contact line, 

are expected to form another profitable area for future research. Lineactants are the 1D analog of 

surfactants; surfactants preferentially adsorb at the surface between two bulk phases and decrease 

the associated surface tension. Lineactants have primarily been studied at the perimeter of 2D 

monolayer structures at surfaces [157-159] (Fig. 1e) which possess a “2D line tension”. The 

influence of lineactants upon the line tension at a three-phase contact line has been examined 

theoretically [160] but, as yet, there are no experiments. Lineactants are expected to decrease the 

line tension.  

 The interrelationship between a negative line tension and the stability of a three-phase 

contact line was discussed in Secs. 3.2.2 and 3.2.3. A negative line tension causes a three-phase 

1010 910 810 710 610 510 410 310 210 meters

atom

vdW grav
)0( SvdW

Fig. 27 Pictorial representation of the line tension length  (Eq. (2)) for the atomic atom, van der 

Waals vdW, and gravitational grav contributions to the line tension (solid arrows), far from a 

wetting transition. Near a wetting transition the line tension length defined in Eq. (6) must be used 

and, under these circumstances for example, the van der Waals line tension length vdW(S0) may 

become very large (dashed line). 
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contact line to become unstable only for sufficiently small spreading coefficient S. In Sec. 3.2.2 

the contact line was unstable for S = -5.6x10-4 mN/m, OW = 45 mN/m (corresponding to  ~ 

0.3o, Eq. (5b)), and  ~ - 55 pN. Larger contact angle droplets ( > 5o) may be stable even for 

negative line tension, as observed in Sec. 3.2.1. The interrelationship between a negative line 

tension , spreading coefficient S, and the onset of a three-phase contact line instability is 

incompletely understood, at least from an experimental perspective; additional experiments 

examining this issue would be a profitable area for future research. The phenomenological theory 

of Clarke [40,41] should provide guidance for how sinusoidal perturbations of the three-phase 

contact line induce contact line instabilities when the line tension is negative (Sec. 3.2.3). 
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