321 research outputs found
Annealing twin development during recrystallization and grain growth in pure nickel
International audienceA 99.995% pure Ni sample, compressed to 25%, was annealed in a SEM chamber and changes in the density of annealing twins were monitored in situ during recrystallization and grain growth. In addition to average microstructural measurements, the evolution of individual grains was also observed. Both the average annealing twin density in the recrystallized domain and the annealing twin density per grain increased during recrystallization. The rate of increase in twin density correlates with the velocity of the recrystallization front. During grain growth, however, the average annealing twin density decreased. The in situ EBSD observations showed both the formation of new twins and the extension of existing twins during annealing. The observations reported here suggest that the existing models for annealing twin formation are incomplete
Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis
Amyloid fibrils are proteinaceous nano-scale linear aggregates. They are of key interest not only because of their association with numerous disorders, such as type II diabetes mellitus, Alzheimer's and Parkinson's diseases, but also because of their potential to become engineered high-performance nano-materials. Methods to characterise the length distribution of nano-scale linear aggregates such as amyloid fibrils are of paramount importance both in understanding the biological impact of these aggregates and in controlling their mechanical properties as potential nano-materials. Here, we present a new quantitative approach to the determination of the length distribution of amyloid fibrils using tapping-mode atomic force microscopy. The method described employs single-particle image analysis corrected for the length-dependent bias that is a common problem associated with surface-based imaging techniques. Applying this method, we provide a detailed characterisation of the length distribution of samples containing long-straight fibrils formed in vitro from β2-microglobulin. The results suggest that the Weibull distribution is a suitable model in describing fibril length distributions, and reveal that fibril fragmentation is an important process even under unagitated conditions. These results demonstrate the significance of quantitative length distribution measurements in providing important new information regarding amyloid assembly
Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization
Abstract The effects of prior stored energy level, annealing temperature, heating velocity, and initial grain size on annealing twin development during static recrystallization of commercially pure nickel (99.999 %) are investigated. The twin content (measured as the twin boundary density or as the number of twins per grain) at the end of recrystallization is shown to be primarily influenced by the prior stored energy level and by the initial grain size, but the effects of heating rate and the annealing temperature are negligible. Taken together, the results are consistent with a new proposition that roughness of the recrystallization front promotes the formation of annealing twins during recrystallization
Quantum Optics and Photonics
Contains reports on nine research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-82-C-0091)U.S. Air Force - Rome Air Development CenterJoint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation Grant (Grant PHY 82-710369
The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers
Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics
TAVR in Older Adults: Moving Toward a Comprehensive Geriatric Assessment and Away From Chronological Age
Calcific aortic stenosis can be considered a model for geriatric cardiovascular conditions due to a confluence of factors. The remarkable technological development of transcatheter aortic valve replacement was studied initially on older adult populations with prohibitive or high-risk for surgical valve replacement. Through these trials, the cardiovascular community has recognized that stratification of these chronologically older adults can be improved incrementally by invoking the concept of frailty and other geriatric risks. Given the complexity of the aging process, stratification by chronological age should only be the initial step but is no longer sufficient to optimally quantify cardiovascular and noncardiovascular risk. In this review, we employ a geriatric cardiology lens to focus on the diagnosis and the comprehensive management of aortic stenosis in older adults to enhance shared decision-making with patients and their families and optimize patient-centered outcomes. Finally, we highlight knowledge gaps that are critical for future areas of study
Quantum Optics and Photonics
Contains reports on five research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant PHY 82-10369)U.S. Air Force - Office of Scientific Research (Contract F49620-82-C-0091)U.S. Air Force - Rome Air Development Cente
Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm
Background: Polyamine metabolism has a critical role in cell death and proliferation representing a potential
target for intervention in breast cancer (BC). This study investigates the expression of spermine oxidase (SMO) and
its prognostic significance in BC. Biochemical analysis of Spm analogues BENSpm and CPENSpm, utilized in
anticancer therapy, was also carried out to test their property in silico and in vitro on the recombinant SMO
enzyme.
Methods: BC tissue samples were analyzed for SMO transcript level and SMO activity. Student’s t test was applied
to evaluate the significance of the differences in value observed in T and NT samples. The structure modeling
analysis of BENSpm and CPENSpm complexes formed with the SMO enzyme and their inhibitory activity, assayed
by in vitro experiments, were examined.
Results: Both the expression level of SMO mRNA and SMO enzyme activity were significantly lower in BC samples
compared to NT samples. The modeling of BENSpm and CPENSpm complexes formed with SMO and their
inhibition properties showed that both were good inhibitors.
Conclusions: This study shows that underexpression of SMO is a negative marker in BC. The SMO induction is a
remarkable chemotherapeutical target. The BENSpm and CPENSpm are efficient SMO inhibitors. The inhibition
properties shown by these analogues could explain their poor positive outcomes in Phases I and II of clinical trials
- …