30 research outputs found

    Analysis of cod-liver oil adulteration using Fourier Transform Infrared (FTIR) spectroscopy.

    Get PDF
    Analysis of the adulteration of cod-liver oil with much cheaper oil-like animal fats has become attractive in recent years. This study highlights an application of Fourier transform infrared (FTIR) spectroscopy as a nondestructive and fast technique for the determination of adulterants in cod-liver oil. Attenuated total reflectance measurements were made on pure cod-liver oil and cod-liver oil adulterated with different concentrations of lard (0.5–50% v/v in cod-liver oil). A chemometrics partial least squares (PLS) calibration model was developed for quantitative measurement of the adulterant. Discriminant analysis method was used to classify cod-liver oil samples from common animal fats (beef, chicken, mutton, and lard) based on their infrared spectra. Discriminant analysis carried out using seven principal components was able to classify the samples as pure or adulterated cod-liver oil based on their FTIR spectra at the selected fingerprint regions (1,500–1,030 cm−1)

    Cochrane ENT in the Covid-19 pandemic: using our expertise and collaborating effectively

    No full text
    The 2020 COVID-19 pandemic has presented enormous challenges for healthcare systems globally. At Cochrane ENT (ent.cochrane.org) we wanted to see how we could use our particular skills and resources to assist professionals and patients in our own clinical field

    Bake-out Mobile Controls for Large Vacuum Systems

    No full text
    Large vacuum systems at CERN (Large Hadron Collider - LHC, Low Energy Ion Rings - LEIR...) require bake-out to achieve ultra-high vacuum specifications

    The New Control System for the Vacuum of ISOLDE

    No full text
    The On-Line Isotope Mass Separator (ISOLDE) is a facility dedicated to the production of radioactive ion beams for nuclear and atomic physics. From ISOLDE vacuum sectors to the pressurized exhaust gas storage tanks there are up to five stages of pumping for a total of more than one hundred pumps including turbo-molecular, cryogenic, dry, membrane and oil pumps. The ISOLDE vacuum control system is critical; the volatile radioactive elements present in the exhaust gases and the high and ultra high vacuum pressure specifications require a complex control and interlock system. This paper describes the reengineering of the control system developed using the CERN UNICOS-CPC framework. An additional challenge has been the usage of the UNICOS-CPC in a vacuum domain for the first time. The process automation provides multiple operating modes (rough pumping, bake-out, high vacuum pumping, regeneration for cryo-pumped sectors, venting, etc). The control system is composed of local controllers driven by PLC (logic, interlocks) and a SCADA application (operation, alarms monitoring and diagnostics)

    The Control System of CERN Accelerators Vacuum (LS1 Activities and New Developments)

    No full text
    After 3 years of operation, the LHC entered its first Long Shutdown period (LS1), in February 2013 [1]. Major consolidation and maintenance works are being performed across the whole CERN’s Accelerator chain, in order to prepare the LHC to restart at higher energy, in 2015. The injector chain shall resume earlier, in mid-14. We report about the on-going vacuum-controls projects. Some of them concern the renovation of the controls of certain machines; others are associated with the consolidations of the vacuum systems of LHC and its injectors; and a few are completely new installations. ue to the wide age-span of the existing vacuum installations, there is a mix of design philosophies and of control-equipment generations. The renovations and the novel projects offer an opportunity to improve the uniformity and efficiency of vacuum controls by: reducing the number of equipment versions with similar functionality; identifying, naming, labelling, and documenting all pieces of equipment; homogenizing the control architectures, while converging to a common software framework
    corecore