284 research outputs found

    Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow

    Full text link
    We experimentally assess the capabilities of an active, open-loop technique for drag reduction in turbulent wall flows recently introduced by Quadrio et al. [J. Fluid Mech., v.627, 161, (2009)]. The technique consists in generating streamwise-modulated waves of spanwise velocity at the wall, that travel in the streamwise direction. A proof-of-principle experiment has been devised to measure the reduction of turbulent friction in a pipe flow, in which the wall is subdivided into thin slabs that rotate independently in the azimuthal direction. Different speeds of nearby slabs provide, although in a discrete setting, the desired streamwise variation of transverse velocity. Our experiment confirms the available DNS results, and in particular demonstrates the possibility of achieving large reductions of friction in the turbulent regime. Reductions up to 33% are obtained for slowly forward-traveling waves; backward-traveling waves invariably yield drag reduction, whereas a substantial drop of drag reduction occurs for waves traveling forward with a phase speed comparable to the convection speed of near-wall turbulent structures. A Fourier analysis is employed to show that the first harmonics introduced by the discrete spatial waveform that approximates the sinusoidal wave are responsible for significant effects that are indeed observed in the experimental measurements. Practical issues related to the physical implementation of this control scheme and its energetic efficiency are briefly discussed.Comment: Article accepted by Phys. Fluids. After it is published, it will be found at http://pof.aip.or

    The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems

    Get PDF
    The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects

    The Hydrodynamics of Astrophysical jets: Scaled Experiments and Numerical Simulations

    Get PDF
    Context. In this paper we study the propagation of hypersonic hydrodynamic jets (Mach number >5) in a laboratory vessel and make comparisons with numerical simulations of axially symmetric flows with the same initial and boundary conditions. The astrophysical context is that of the jets originating around young stellar objects (YSOs). Aims. In order to gain a deeper insight into the phenomenology of YSO jets, we performed a set of experiments and numerical simulations of hypersonic jets in the range of Mach numbers from 10 to 20 and for jet-to-ambient density ratios from 0.85 to 5.4, using different gas species and observing jet lengths of the order of 150 initial radii or more. Exploiting the scalability of the hydrodynamic equations, we intend to reproduce the YSO jet behaviour with respect to jet velocity and elapsed times. In addition, we can make comparisons between the simulated, the experimental, and the observed morphologies. Methods. In the experiments the gas pressure and temperature are increased by a fast, quasi-isentropic compression by means of a piston system operating on a time scale of tens of milliseconds, while the gas density is visualized and measured by means of an electron beam system. We used the PLUTO software for the numerical solution of mixed hyperbolic/parabolic conservation laws targeting high Mach number flows in astrophysical fluid dynamics. We considered axisymmetric initial conditions and carried out numerical simulations in cylindrical geometry. The code has a modular flexible structure whereby different numerical algorithms can be separately combined to solve systems of conservation laws using the finite volume or finite difference approach based on Godunov-type schemes. Results. The agreement between experiments and numerical simulations is fairly good in most of the comparisons. The resulting scaled flow velocities and elapsed times are close to the ones shown by observations. The morphologies of the density distributions agree with the observed ones as well. Conclusions. The laboratory and the simulated hypersonic jets are all pressure matched, i.e. their axial regions are almost isentropic at the nozzle exit. They maintain their collimation for long distances in terms of the initial jet radii, without including magnetic confinement effects. This yields a qualitatively good agreement with the observed YSO jet morphologies. It remains to be seen what happens when non-axially symmetric perturbations of the flow are imposed at the nozzle, both in the experiment and in the simulation

    Cool spots on the surface of the active giant PZ Mon

    Full text link
    Based on the multiband (BVRIJHKL) photometric observations of the active red giant PZ Mon performed for the first time in the winter season of 2017-2018, we have determined the main characteristics of the spotted stellar surface in a parametric three-spot model. The unspotted surface temperature is Teff=4730 K, the temperature of the cool spots is Tspot=3500 K, their relative area is about 41%, and the temperature of the warm spots is Twarm=4500 K with a maximum relative area up to 20%. The distribution of spots over the stellar surface has been modeled. The warm spots have been found to be distributed at various longitudes in the hemisphere on the side of the secondary component and are most likely a result of its influence.Comment: 5 pages, 7 figure

    Macrozoobenthos communities along the marine pipeline route at the Lunskoye field (shelf of northeastern Sakhalin) and their long-term variability

    Get PDF
    Results of benthos surveys conducted along the marine pipeline at the Lunskoe oilfield in July of 2006-2010 are presented. The sediment samples were taken at 59 stations with the depth 0-45 m by van Veen grab (0.05 m2, 0.11 m2, 0.25 m2), 1-3 samples per each station, in total 375 samples. Macrozoobenthos was extracted from the sampled sediments by seawater washing through 1 mm sieve and preserved by 4 % buffered formaldehyde. Its species composition, biomass and abundance were determined according to standard techniques. Eight phyla and 257 species of macrozoobenthos are identified in the surveyed area, mainly amphipods (103 species) and polychaetes (60 species). Its mean biomass amounts to 192.2 ± 12.1 g/m2, the mean distribution density - 28331.8 ± 3055.9 ind./m2. Cumaceans and amphipod crustaceans dominate by their number and bivalve molluscs and cumaceans - by their biomass. Six benthic communities are revealed by the hierarchical agglomerative method of multidimensional clustering with group-average linking of Bray-Curtis similarities, after 4th root transformation of the species biomass values (PRIMER software). Type of the bottom sediments and depth are the main factors determining characteristics and distribution patterns of the benthic assemblages
    corecore