178 research outputs found

    Anomalous Processes with General Waiting Times: Functionals and Multipoint Structure

    Get PDF
    Many transport processes in nature exhibit anomalous diffusive properties with non-trivial scaling of the mean square displacement, e.g., diffusion of cells or of biomolecules inside the cell nucleus, where typically a crossover between different scaling regimes appears over time. Here, we investigate a class of anomalous diffusion processes that is able to capture such complex dynamics by virtue of a general waiting time distribution. We obtain a complete characterization of such generalized anomalous processes, including their functionals and multi-point structure, using a representation in terms of a normal diffusive process plus a stochastic time change. In particular, we derive analytical closed form expressions for the two-point correlation functions, which can be readily compared with experimental data.Comment: Accepted in Phys. Rev. Let

    Psychometric Properties of the Contextual Body Image Questionnaire for Athletes: A Replication and Extension Study in Female Collegiate Athletes

    Get PDF
    Background Although the link between body dissatisfaction and eating disorder (ED) pathology is well-established in general female samples, less is known about contextual body image (CBI) among female athletes. CBI refers to female athletes’ body image concerns in two contexts: sport and daily life. The Contextual Body Image Questionnaire for Athletes (CBIQA) measures four dimensions of body image (Appearance, Thin-Fat Self-Evaluation, Thin-Fat Others’ Evaluation, and Muscularity) in both contexts. In a sample of female collegiate athletes, this study sought to A) investigate the psychometric properties of the CBIQA, B) examine the cross-sectional relation of CBI with ED pathology and negative affect, and C) assess the degree to which CBI prospectively predicts ED pathology and negative affect. Method Using self-report data collected from a multi-site parent trial, we examined the psychometric properties of the CBIQA by confirmatory factor analysis. We assessed construct and criterion validity via cross-sectional bivariate correlation analyses with thin-ideal internalization, negative affect, and ED pathology. Using data from Time 1 and 6 months later (Time 2), we investigated the degree to which CBI prospectively predicted ED pathology and negative affect. Results Results from the CFA largely confirmed de Bruin et al.’s (2011) original factor analysis. Two CBIQA dimensions (Thin-Fat Self and Appearance) in both contexts correlated with ED pathology and negative affect. Thin-Fat Others also correlated with ED pathology in both contexts and negative affect in the sport context. The Muscularity dimension was predominantly orthogonal with other measures. CBIQA dimensions were uncorrelated with thin-ideal internalization. When controlling for BMI and Time 1 scores, daily life and sport appearance concerns predicted ED pathology, whereas perceived evaluation of thin-fat by others in the sport context predicted negative affect 6 months later. Conclusions Results support the psychometric validity of the CBIQA and suggest that it captures variance discrete from thin-ideal internalization. The Muscularity dimension largely was not related to other outcomes. Further, specific elements of perceived self- and other-evaluation in both contexts is relevant to risk for ED pathology and negative affect. Future research could examine the impact of dual body image between sports seasons and after transitioning out of sport

    Brownian motion with dry friction: Fokker-Planck approach

    Full text link
    We solve a Langevin equation, first studied by de Gennes, in which there is a solid-solid or dry friction force acting on a Brownian particle in addition to the viscous friction usually considered in the study of Brownian motion. We obtain both the time-dependent propagator of this equation and the velocity correlation function by solving the associated time-dependent Fokker-Planck equation. Exact results are found for the case where only dry friction acts on the particle. For the case where both dry and viscous friction forces are present, series representations of the propagator and correlation function are obtained in terms of parabolic cylinder functions. Similar series representations are also obtained for the case where an external constant force is added to the Langevin equation.Comment: 18 pages, 13 figures (in color

    Path integral approach to random motion with nonlinear friction

    Get PDF
    Using a path integral approach, we derive an analytical solution of a nonlinear and singular Langevin equation, which has been introduced previously by P.-G. de Gennes as a simple phenomenological model for the stick-slip motion of a solid object on a vibrating horizontal surface. We show that the optimal (or most probable) paths of this model can be divided into two classes of paths, which correspond physically to a sliding or slip motion, where the object moves with a non-zero velocity over the underlying surface, and a stick-slip motion, where the object is stuck to the surface for a finite time. These two kinds of basic motions underlie the behavior of many more complicated systems with solid/solid friction and appear naturally in de Gennes' model in the path integral framework.Comment: 18 pages, 3 figure

    The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    Get PDF
    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa

    Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking

    Full text link
    Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.Comment: 15 pages, 15 figures; References adde

    On distributions of functionals of anomalous diffusion paths

    Full text link
    Functionals of Brownian motion have diverse applications in physics, mathematics, and other fields. The probability density function (PDF) of Brownian functionals satisfies the Feynman-Kac formula, which is a Schrodinger equation in imaginary time. In recent years there is a growing interest in particular functionals of non-Brownian motion, or anomalous diffusion, but no equation existed for their PDF. Here, we derive a fractional generalization of the Feynman-Kac equation for functionals of anomalous paths based on sub-diffusive continuous-time random walk. We also derive a backward equation and a generalization to Levy flights. Solutions are presented for a wide number of applications including the occupation time in half space and in an interval, the first passage time, the maximal displacement, and the hitting probability. We briefly discuss other fractional Schrodinger equations that recently appeared in the literature.Comment: 25 pages, 4 figure

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces
    corecore