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Using a path integral approach, we derive an analytical solution of a nonlinear

and singular Langevin equation, which has been introduced previously by P.-G. de

Gennes as a simple phenomenological model for the stick-slip motion of a solid object

on a vibrating horizontal surface. We show that the optimal (or most probable) paths

of this model can be divided into two classes of paths, which correspond physically

to a sliding or slip motion, where the object moves with a non-zero velocity over

the underlying surface, and a stick-slip motion, where the object is stuck to the

surface for a finite time. These two kinds of basic motions underlie the behavior of

many more complicated systems with solid/solid friction and appear naturally in de

Gennes’ model in the path integral framework.

I. INTRODUCTION

We study an old but still only very partially understood problem: the dynamics of a solid

object moving over a solid surface. In practice this is a very complicated and as yet unsolved

problem, although there is a wealth of experiments, since the general problem is very old

and ubiquitous in nature, ranging from geology to physics and biology. The basic difficulty

lies in the very complex nature and behavior of the solid/solid interface, which leads to a

complicated stick-slip motion of the object [1].

Following P.-G. de Gennes we study in detail one of the simplest phenomenological mod-

els, far from those of most practical interest, but as a starting point to develop a new

theoretical approach to describe basic aspects of the above mentioned problem. Ignoring all

details of the solid/solid interfacial layer, de Gennes proposed a simple Langevin equation

for the velocity v(t) of a solid object of mass m on a horizontal vibrating surface [2, 3]:

mv̇(t) + αv(t) + σ[v(t)]∆F = ξ(t). (1)

http://arxiv.org/abs/0910.4663v1
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In this equation two kinds of friction between the object and the surface, over which it

moves, appear: a) a dynamic friction (sometimes called kinetic friction), which is taken

proportional to v as in the Stokes friction term in fluids and characterized by the dynamical

friction coefficient α; b) a static friction (sometimes called dry friction), which is given by

the σ(v)∆F term. Here, the function σ(v) is the sign function of the object’s velocity v, i.e.,

σ(v) = +1, 0,−1 for v > 0, = 0, < 0, respectively, and ∆F is the coefficient (strength) of the

static friction. The σ(v)∆F term represents a nonlinearity and, in fact, a singularity in the

Langevin equation (1), since σ(v) is discontinuous at v = 0. Physically, this term ensures

that the solid object is subject to a static friction, which is equal to ∆F and acts always,

via σ(v), opposite to the direction of motion of the object. Both friction coefficients α and

∆F are here assumed to be constant, which implies that the object moves over an isotropic

surface.

In addition, the motion of the object is driven by externally applied one-dimensional

vibrations of the underlying surface, represented by an external noise ξ(t), which has the

properties of Gaussian white noise:

〈ξ(t)〉 = 0, (2)

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), (3)

with noise strength D. The complicated solid/solid interface is therefore replaced by a static

and a dynamic friction term, and randomness is externally induced by Gaussian noise.

In this article we use a path integral approach to study the properties of the nonlinear

de Gennes’ model Eq. (1). While de Gennes has used a Fokker-Planck approach to obtain

approximate results for the transition probability (defined in the next section), the path

integral approach provides a more dynamical picture of the statistical properties of the

object, on the basis of the most probable or optimal paths in the velocity-time plane. Using

these optimal paths, we obtain an analytical solution for the transition probability in the

saddle-point approximation for small values of D. As one of our main results we show that

the optimal paths of Eq. (1) can be divided into two classes of paths, which correspond

physically to slip motion, where the object moves with a velocity v 6= 0 over the underlying

surface, and stick-slip motion, where the object is stuck to the surface with v = 0 for a

finite time. The existence of these two kinds of basic motions is a basic element of almost

all dynamical systems with solid/solid friction and appear naturally in de Gennes’ model in
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the path integral framework.

In the following we present a detailed account of the path-integral approach to nonlinear

stochastic systems. We analyze the structure of the optimal paths of Eq. (1), and derive an

analytical expression for the transition probability, defined in the next section.

II. PATH INTEGRAL APPROACH

The transition probability or propagator f(v, t|v0, t0) gives the probability to find the

object with velocity v at time t, given that it had a velocity v0 at the initial time t0. Using

very many paths generated by the Gaussian white noise ξ(t), the transition probability can

be obtained empirically from many realizations of the de Gennes equation (1) for fixed initial

and final conditions. In the asymptotic time limit t → ∞ the transition probability converges

to a stationary distribution p(v), which can be derived from Eq. (1). For, introducing an

effective potential

U(v) =
v2

2τm

+ |v|∆, (4)

with the characteristic inertial time τm = m/α and ∆ ≡ ∆F /m, Eq. (1) takes the form of

Brownian motion in the nonlinear potential U(v):

v̇(t) = −U ′(v) + ξ(t)/m. (5)

Due to the confining character of U(v) a stationary distribution of the velocity coordinate

exists and can be calculated from Eq. (5) using standard methods [4]. The result is

p(v) = Ne−γU(v), (6)

where γ ≡ m2/D and N is a normalization constant. Clearly, the stationary distribution

p(v) is symmetric under a change of sign of v. In fact, also the propagator f(v, t|v0, t0)

has to be symmetric under the change v0 → −v0 and v → −v. This forward/backward

symmetry is physically due to the fact that the surface is assumed to be isotropic and the

applied noise is symmetric, so that no bias in forward or backward direction is induced. As

a consequence, all the statistical properties of the velocity also have this forward/backward

symmetry.

In order to obtain the transition probability we use a path integral approach, which was

introduced into Statistical Mechanics by Onsager and Machlup [6, 7] to study the fluctuations
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of a system in thermal equilibrium. It was generalized to fluctuations in systems in a NESS

in Refs. [8, 9, 10, 11]. In this approach the transition probability f(v, t|v0, t0) is formally

expressed as a path integral, i.e., as an integral over all paths leading from the initial state

(v0, t0) to the final state (v, t). For the dynamics of Eq. (1), this path integral is given by [5]

f(v, t|v0, t0) =
∫ (v,t)

(v0,t0)
J [v]e−γA[v̇,v]Dv, (7)

where A[v̇, v] is a functional of v(s),

A[v̇, v] =
∫ t

t0
L(v̇(s), v(s))ds, (8)

which is usually referred to as the action associated with the path v(s). Here, L is the

Lagrangian

L(v̇, v) =
1

4
(v̇ + U ′(v))

2
. (9)

In Eq. (7) the integral
∫

Dv denotes an integral over all paths v(s) from (v0, t0) to (v, t).

The Jacobian J [v] originates from the transformation ξ(t) → v(t) and is a functional of v(s)

due to the nonlinearity of the force −U ′(v) in Eq. (5) [12, 13]:

J [v] = e
1

2

∫

t

t0

U ′′(v(s))ds
. (10)

We evaluate the path integral Eq. (7) in the saddle-point approximation, which proceeds

as follows (cf. [14]). For large γ the dominant contribution to the path integral is due

to a particular path v∗(s) that maximizes the exponent in Eq. (7), or equivalently, which

minimizes the action A[v̇, v]:

δA[v̇∗, v∗] = 0. (11)

This condition yields an Euler-Lagrange (EL) equation

d

dt

∂L

∂v̇∗
−

∂L

∂v∗
= 0, (12)

for the path v∗(s), which is the path with highest probability among all paths connecting

(v0, t0) and (v, t), i.e., it is the most probable or optimal path. We can then expand the

action A[v̇, v] in the neighborhood of the optimal path using

v(s) = v∗(s) + z(s), (13)
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where z(t) is the deviation from the optimal path. Clearly, the boundary conditions for z(s)

are z(t0) = z(t) = 0. Expanding the action around v∗(s) yields

A[v̇, v] = A[v̇∗, v∗] +
∫ t

t0
ds

δA

δv(s)

∣

∣

∣

∣

∣

v∗

z(s)

+
1

2

∫ t

t0
ds
∫ t

t0
ds′

δ2A

δv(s)δv(s′)

∣

∣

∣

∣

∣

v∗

z(s)z(s′) + ... (14)

Here, the linear term vanishes due to Eq. (11) and, using Eqs. (8) and (9), the second order

term can be calculated as

1

2

∫ t

t0
ds
∫ t

t0
ds′

δ2A

δv(s)δv(s′)

∣

∣

∣

∣

∣

v∗

z(s)z(s′) =
∫ t

t0
ds
[

ż(s)2 + Ω(v∗(s))z(s)2
]

, (15)

with

Ω(v) ≡ U ′′(v)2 + U ′(v)U ′′′(v). (16)

The leading orders in the expansion of the action are thus

A[v̇, v] = A[v̇∗, v∗] +
∫ t

t0
ds
[

ż(s)2 + Ω(v∗(s))z(s)2
]

. (17)

Substituting only the zeroth order term of this expansion into the path integral Eq. (7) then

yields the saddle-point approximation of the transition probability f(v, t|v0, t0):

f(v, t|v0, t0) ∼= J [v∗]e−γA[v̇∗,v∗], (18)

valid for large γ. Keeping, in addition, the second order term in Eq. (17) yields the corrected

form

f(v, t|v0, t0) ∼= J [v∗]e−γA[v̇∗,v∗]F [v∗], (19)

where the fluctuation factor F [v∗] is determined by the path integral

F [v∗] =
∫ (0,t)

(0,t0)
e
−γ
∫

t

t0

ds[ż(s)2+Ω(v∗(s))z(s)2]Dz. (20)

The analytic calculation of the fluctuation factor for the nonlinear potential Eq. (4) is beyond

the scope of this article. In the following we focus on the properties of the optimal paths

and neglect the second order term in the expansion Eq. (17).
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III. SOLUTION OF THE EULER-LAGRANGE EQUATION

For the Lagrangian Eq. (9) the EL-equation assumes the explicit form

v̈∗ −
v∗

τ 2
m

− σ(v∗)
∆

τm

= 0. (21)

A complete picture of the properties of the optimal paths and, on the basis of Eq. (18),

of the transition probability f(v, t|v0, t0) is obtained by solving Eq. (21) under the given

boundary conditions, which are fixed initial and final velocities (v0, t0) and (v, t), respectively.

Eq (21) consists in fact of two different equations, namely one for positive v∗, in which case

σ(v∗) = +1 and one for negative v∗, where σ(v∗) = −1. Each of these two equations are

straightforward to solve, if the boundary conditions are such that v∗ is always positive or

negative, i.e., if v∗(s) remains entirely on either the upper (v > 0) or the lower half (v < 0)

of the velocity-time (v-s) plane. In that case one finds the solutions (dropping the ∗ for

optimal path in the following)

v±(s) = B±es/τm + C±e−s/τm ∓ ∆τm, (22)

where the constants B± and C± are determined by the boundary conditions (cf. Appendix A)

and + refers to the upper half plane and − to the lower, respectively.

The forward/backward symmetry of the velocity statistics (discussed below Eq. (6)) im-

plies that the basic solutions v+(s) and v−(s) are symmetric with respect to the v = 0 axis:

the path v+(s) between (v0, t0) and (v, t) on the upper half plane is just the mirror image

of the path v−(s) between (−v0, t0) and (−v, t) on the lower half plane. Therefore, in the

following discussion it is sufficient to consider only a positive initial velocity v0, without loss

of generality. Due to this symmetry, the action for the paths v+(s) and v−(s) is the same

and can be calculated by substituting Eq. (22) into Eqs. (9) and (8). This yields for the

basic action

A[v̇±, v±] =
∫ t

t0
L(v̇±, v±)ds = Λ(v, t; v0, t0), (23)

where we define

Λ(v, t; v0, t0) ≡

(

et/τm(∆τm + |v|) − et0/τm(∆τm + v0)
)2

2τm (e2t/τm − e2t0/τm)
. (24)

In addition to the set of basic solutions of Eq. (22), another formal solution of the EL-

equation (21) is given by v(s) = 0. Using the formal solutions v±(s) and v(s) = 0 one
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(v0,t0)

(v,t)

s

v+(s)

(a)

v
(s
)

s

v+(s)

v-(s)

(v0,t0)

(v,t)

t
-

(b)

v
(s
)

(c)
(v0,t0)

v
(s
)

s

FIG. 1: Direct paths in the v-s-plane. (a) A direct path on the upper half plane, parametrized

by Eq. (25). (b) A direct crossing path, parametrized by Eq. (26). (c) Here, we plot a number

of direct paths that are very close together initially. When a direct path crosses the v = 0 axis a

jump from a positive to a negative curvature occurs, while direct paths that remain on the upper

half plane continue with a positive curvature. The jump in the curvature leads to a region that

can not be reached by any direct path from a given initial point (v0, t0) (black region).

can construct the full solution of the EL-equation for fixed initial and final points as linear

combinations of the three formal solutions. Two distinct classes of solutions then arise,

namely indirect paths that partly follow the v = 0 axis, and direct paths that do not. They

are both discussed in the following.

A. Direct paths

Direct paths are characterized by continuous v(s) and v̇(s). They remain either entirely

on one half of the v-s plane or cross the v = 0 axis. The former are given by the solutions

v±(s), while paths that cross the v = 0 axis consist of one branch on the upper half plane

and one on the lower half plane (cf. Fig. 1(a) and (b)). The direct paths (indicated by the
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subscript d) that remain on the upper plane are simply parametrized by

vd(s)|
v,t
v0,t0

= v+(s)|v,t
v0,t0

, (25)

where v+(s) is given by Eq. (22) and the boundary conditions are indicated.

For the direct crossing paths we have to consider that the upper branch is given by v+(s)

under the boundary conditions (v0, t0) and (0, t̄), where t̄ is the time at which the path crosses

the v = 0 axis, and the lower branch is given by v−(s) under the boundary conditions (0, t̄)

and (v, t). Direct crossing paths (indicated by the subscript d and the superscript ×) are

thus parametrized by

v×
d (s) =























v+(s)|0,t̄
v0,t0

, t0 ≤ s ≤ t̄

v−(s)|v,t
0,t̄ , t̄ < s ≤ t.

(26)

Here, the crossing time t̄ is always t0 < t̄ < t and is determined from the condition of a

continuous acceleration at the crossover point:

v̇+(t̄) = v̇−(t̄). (27)

Using Eq. (22), this condition leads to a fourth order equation for t̄:

0 = µ4∆τm − µ3
[

(∆τm + v0)e
t0/τm + (∆τm − v)et/τm

]

+µ
[

(∆τm + v0)e
(t0+2t)/τm + (∆τm − v)e(2t0+t)/τm

]

−∆τme(2t0+2t)/τm , (28)

where µ = et̄/τm . Eq. (28) has a unique real root t0 < t̄ < t.

The action associated with the direct paths that remain on the upper half plane is

A[v̇d, vd] = A[v̇+, v+] = Λ(v, t; v0, t0), (29)

which follows immediately from Eqs. (25) and (23). The action of the direct crossing paths

on the other hand, consists of contributions from the upper and the lower branch, i.e.,

A[v̇×
d , v×

d ] =
∫ t̄

t0
L(v̇+, v+)ds +

∫ t

t̄
L(v̇−, v−)ds

= Λ(0, t̄; v0, t0) + Λ(v, t; 0, t̄), (30)

using Eqs. (26) and (23). Throughout this paper, the function Λ of Eq. (24) is adapted to

the case at hand, by replacing v, t; v0, t0 by the appropriate velocities and times.
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A crucial observation is then that not all initial and final points in the entire velocity-

time plane can be connected by a direct path (cf. Fig. 1(c)). This is due to a jump in the

curvature of the direct path, when the v = 0 axis is crossed: the upper branch v+(s) is

always convex with v̈+ ≈ ∆ close to the v = 0 axis, while the lower branch v−(s) is always

concave with v̈− ≈ −∆ close to the v = 0 axis (cf. Eq. (21)). There exists thus a region

in the v-s-plane that cannot be reached by any direct path from a given initial point. As

t−t0 becomes larger this region grows exponentially, so that eventually, as t → ∞, fewer and

fewer final points can be reached by a direct optimal path. However, this seems to contradict

the fact that a stationary distribution exists and has to be approached by f(v, t|v0, t0) in the

asymptotic time limit. Therefore, direct optimal paths can not represent the full solution of

the EL-equation (21). The key is to consider other solutions that satisfy Eq. (21) piecewise.

This allows us to construct another class of solutions, namely indirect paths.

B. Indirect paths

Indirect paths consist of three parts: a relaxation branch from the initial point (v0, t0) to

the axis at (0, ta), a part along the zero axis from (0, ta) to (0, tb), and an excitation branch

from (0, tb) to the final point (v, t). The relaxation branch is given by v+(s) under the

boundary conditions (v0, t0) and (0, ta) and the excitation branch by v+(s) or v−(s) under

the boundary conditions (0, tb) and (v, t) (cf. Fig. 2(a) and (b)). Indirect paths (indicated

by the subscript id) are thus parametrized by

vid(s) =



















































v+(s)|0,ta
v0,t0

, t0 ≤ s ≤ ta

0 , ta < s < tb

v±(s)|v,t
0,tb

, tb ≤ s ≤ t.

(31)

Clearly, the times ta, tb have to satisfy the conditions t0 < ta ≤ tb < t. All three parts

of vid(s) satisfy the EL-equation piecewise. We note that indirect paths are valid solutions

of Eq. (21) because in the path integral formalism the boundary conditions are the fixed

initial and final points of the optimal path. If one specifies instead the initial velocity and

the initial acceleration of the object, indirect paths can not arise.
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v
(s
)

s

(b)(v0,t0)

v
(s
)

s

(a)

ta1 tb1tb2ta2

(v0,t0)

(v,t)

(v,t)

ta1 ta2 tb2

tb1

v
(s
)

s

(c)(v0,t0)

(v,t)

ta tb
- -

v
(s
)

s

(d)(v0,t0)

(v,t)

ta tb
- -

FIG. 2: Indirect paths in the v-s-plane. (a) Two examples of indirect paths on the upper half

plane, parametrized by Eq. (31). Path 1 (long dashed curve) crosses the v = 0 axis at the times

ta1 and tb1. Path 2 (short dashed curve) at the times ta2 and tb2. (b) Two indirect paths that cross

the v = 0 axis, parametrized by Eq. (31). (c) and (d): The unique indirect paths with minimal

action between given initial and final points, parametrized by Eq. (38).

The action associated with these indirect paths is

A[v̇id, vid] =
∫ ta

t0
L(v̇+, v+)ds +

∫ t

tb

L(v̇±, v±)ds

= Λ(0, ta; v0, t0) + Λ(v, t; 0, tb), (32)

which follows from Eqs. (31) and (23). Since ta and tb are not specified, there are in principle

infinitely many indirect paths between (v0, t0) and (v, t) possible, which all have different

actions according to Eq. (32) (cf. Fig. 2(a) and (b)). But, among all these indirect paths

there exists a unique indirect path with minimal action. This “optimal” indirect path is

obtained by determining the minimum of A[v̇id, vid] of Eq. (32), with respect to ta and tb.

This is a minimization problem subject to the inequality constraint

ta ≤ tb. (33)

In order to find the solution for this minimization we note that

∂

∂ta
A[v̇id, vid] =

∂

∂ta
Λ(0, ta; v0, t0) (34)
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is independent of tb and has only one zero for ta ∈ [t0, t], at which the axis is crossed with a

positive slope. Likewise

∂

∂tb
A[v̇id, vid] =

∂

∂tb
Λ(v, t; 0, tb), (35)

independent of ta. These properties imply that A[v̇id, vid] of Eq. (32) has a unique global

minimum as a function of ta and tb and is monotonically increasing away from it. Due to

this monotonicity, the minimum of A[v̇id, vid], subject to the inequality constraint ta ≤ tb, is

either given by the global unconstrained minimum or, if this minimum can not be attained

because it violates the inequality constraint Eq (33), by a minimum of A[v̇id, vid] subject to

the equality constraint ta = tb.

We then obtain for the minimum of A[v̇id, vid]:

(i) The unconstrained minimum is determined by setting each of the time derivatives,

Eqs. (34) and (35), equal to zero. This yields the times

t̄a ≡ t0 + τm ln
(

1 +
v0

∆τm

)

, (36)

t̄b ≡ t − τm ln

(

1 +
|v|

∆τm

)

. (37)

We note that the time t̄a is just the time at which a noise-free (or average) path, described

by Eq. (5) with ξ(t) = 0, would relax to the v = 0 axis starting from (v0, t0). Likewise, t̄b is

the time at which a noise-free path starting at (v, t) would reach the axis, moving backward

in time. We parametrize the optimal indirect path specified by t̄a and t̄b by (cf. Fig. 2(c)

and (d)):

v̄id(s) =



















































v+(s)|0,t̄a
v0,t0

, t0 ≤ s ≤ t̄a

0 , t̄a < s < t̄b

v±(s)|v,t
0,t̄b

, t̄b ≤ s ≤ t.

(38)

The associated action is then given by Eq. (32), where ta and tb are replaced by t̄a and t̄b,

respectively,

A[ ˙̄vid, v̄id] = Λ(0, t̄a; v0, t0) + Λ(v, t; 0, t̄b)

= Λ(v, t; 0, t̄b)

= U(v). (39)
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The term Λ(0, t̄a; v0, t0) on the right hand side of the first line of Eq. (39) vanishes, because

it is the action associated with the noise-free relaxation branch and for these paths the

Lagrangian is identically zero (cf. Eq. (9)). The third line follows upon substituting Eq. (37)

into Eq. (24).

(ii) If the global minimum does not exist, i.e., if t̄b < t̄a, one has to determine the minimum

of Eq. (32) under the equality constraint ta = tb. For this, one has to solve

∂

∂ta
[Λ(0, ta; v0, t0) + Λ(v, t; 0, ta)] = 0, (40)

for ta. One finds that there is a unique real solution of this equation ∈ [t0, t], which is

identical with the time t̄ determined by Eq. (28). The associated action is then given by

Eq. (32) with ta = tb = t̄, i.e., Λ(0, t̄; v0, t0) + Λ(v, t; 0, t̄), which is just equal to the action of

the direct crossing paths, A[v̇×
d , v×

d ] of Eq. (30).

C. Optimal paths in the v-s-plane

Having determined the two classes of solutions of the EL-equation (21), one can now find

the unique optimal path between given initial and final points, direct or indirect, using the

minimal action principle. To this end we compare the actions of the direct and indirect

paths separately for the paths on the upper half-plane and for the crossing paths.

1. We consider the paths on the upper half-plane: The direct paths are given by Eq. (25)

with the associated action A[v̇d, vd], Eq. (29). The indirect paths are specified by

Eq. (38) with the associated action A[ ˙̄vid, v̄id], Eq. (39). From the condition

A[v̇d, vd] = A[ ˙̄vid, v̄id], (41)

which, using Eqs. (29) and (39), is equivalent to

U(v) = Λ(v, t; v0, t0), (42)

one can derive a critical value of v, denoted by u+(t), such that A[ ˙̄vid, v̄id] ≤ A[v̇d, vd]

if v ≤ u+(t). Eq. (42) leads to a quadratic equation for v, which has the relevant root

u+(t) ≡ e(t−t0)/τm(∆τm + v0) − ∆τm

−
√

(v2
0 + 2∆τmv0) (e2(t−t0)/τm − 1). (43)
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This means that if v < u+(t) and t ≥ t̄a, the action of the indirect path is lower than

that of the direct path. The condition t ≥ t̄a is necessary for indirect paths to exist.

2. Let us now consider crossing paths. The direct crossing paths v×
d (s) are given by

Eq. (26) with the associated action A[v̇×
d , v×

d ], Eq. (30). As before, the indirect paths

are specified by Eq. (38) with the associated action A[ ˙̄vid, v̄id], Eq. (39). The results

of the minimization of Eq. (32) show the following: When t̄b > t̄a the indirect crossing

path always has a lower action than the direct crossing path between the same initial

and final points, i.e., A[ ˙̄vid, v̄id] ≤ A[v̇×
d , v×

d ]. On the other hand, when t̄b < t̄a, the

indirect paths of Eq. (38) no longer exist and the direct crossing path then has the

lowest action. Therefore, from the condition

t̄b = t̄a (44)

one can derive a critical value of v on the lower half plane, namely

u−(t) = −∆τm

(

∆τm

∆τm + v0

e(t−t0)/τm − 1
)

, (45)

so that the action of the indirect path is lower than that of the direct path, if v ≥ u−(t)

and t ≥ t̄a.

It follows from this discussion that for a given initial point (v0, t0) the optimal path is

an indirect path if the end point (v, t) lies in the interval u−(t) ≤ v ≤ u+(t) with t ≥ t̄a,

otherwise the optimal path is a direct path (cf. Fig. 3).

The curves u+(t) and u−(t) represent boundaries in the v-s plane, separating different

qualitative dynamical behaviors of the moving object in terms of direct and indirect optimal

paths. In fact, physically, direct paths can be considered as representing a pure slip motion

of the object, where v 6= 0 apart from one crossing point. Indirect paths follow the v = 0

axis for a finite time and thus represent physically a stick-slip motion.

IV. TRANSITION PROBABILITY

From the structure of the optimal paths in the v-s-plane, the transition probability

f(v, t|v0, t0) follows directly via the saddle-point approximation Eq. (18). The Jacobian

as given by Eq. (10) reads explicitly for the potential U(v) of Eq. (4):

J [v∗] = e
(t−t0)/(2τm)+∆

∫

t

t0

δ(v∗(s))ds
. (46)
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v
(s
)

(v0,t0)
(v1,t1)

(v2,t2)

ta
- s

u+

u-

FIG. 3: Diagram of the optimal paths in a velocity-time plane for a fixed initial point (v0, t0) and

varying final points. The bold black solid curves are given by u+(s), Eq. (43), on the upper half

plane, and by u−(s), Eq. (45), on the lower half plane. When the final point of the optimal path

lies outside of the shaded region, as here (v1, t1), the optimal path is a direct path (solid line).

Otherwise, if the final point lies inside the shaded region, as here (v2, t2), the optimal path is an

indirect path (dashed line).

Here, the term
∫ t
t0

δ(v∗(s))ds is different from zero only when the optimal path v∗(s) crosses

the v = 0 axis. This means that for the direct paths on the upper half plane the Jacobian

is just a function of t0, t, which can effectively be absorbed into the normalization of the

transition probability. Only for the direct crossing paths and the indirect paths the Jacobian

contributes significantly. For the direct crossing paths we obtain

∫ t

t0
δ
(

v×
d (s)

)

ds =
1

|v̇×
d (t̄)|

, (47)

and for the indirect paths

∫ t

t0
δ (v̄id(s)) ds =

1

2| ˙̄vid(t̄a)|
+

1

2| ˙̄vid(t̄b)|
=

1

∆
. (48)

In deriving these expressions we have used the representation of the delta function [15]

δ(g(x)) =
∑

i

1

|g′(xi)|
δ(x − xi), (49)

where the xi are the zeros of g(x). In the last step of Eq. (48) we have substituted t̄a and t̄b

from Eqs. (36) and (37) into the time derivative of v̄id, Eq. (38).
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With these results for the Jacobian, we can express the transition probability given by

Eq. (18) as follows. The initial point (v0, t0) is given.

For t ≤ t̄a (defined in Eq. (36)), no indirect optimal paths occur, so that for a final

velocity in the interval −∞ < v ≤ 0 only the direct crossing paths contribute to the action

in the expression for the transition probability, Eq. (18), while for 0 < v < ∞ only direct

paths on the upper plane contribute. Using Eqs. (29) and (30), respectively, in Eq. (18),

and considering the contribution of the Jacobian, Eq. (46) with Eq. (47), we obtain the

transition probability

f(v, t|v0, t0) = N1























e−γ[Λ(0,t̄;v0,t0)+Λ(v,t;0,t̄)]+∆/|v̇×
d

(t̄)| , −∞ < v ≤ 0

e−γΛ(v,t;v0,t0) , 0 < v < ∞,

(50)

where N1 is a normalization factor.

For t > t̄a indirect paths contribute and the structure of the optimal paths (as discussed

in Sec. IIIC) indicates that direct crossing paths contribute to the action in Eq. (18) for a

final velocity in the interval −∞ < v ≤ u−(t), while indirect paths contribute for u−(t) <

0 < u+(t), and direct paths on the upper plane for u+(t) ≤ v < ∞. Using Eqs. (29), (30)

and (32), respectively, in Eq. (18), and considering the contribution of the Jacobian, Eq. (46)

with Eqs. (47) and (48), respectively, the transition probability reads

f(v, t|v0, t0) = N2



















































e−γ[Λ(0,t̄;v0,t0)+Λ(v,t;0,t̄)]+∆/|v̇×
d

(t̄)| , −∞ < v ≤ u−

e−γU(v)+1 , u− < v < u+

e−γΛ(v,t;v0,t0) , u+ ≤ v < ∞,

(51)

where N2 is a normalization factor.

Since both u− → −∞ and u+ → ∞ as t → ∞, only indirect paths contribute to the

transition probability in the asymptotic time limit and we recover the stationary distribution

Eq. (6) in this limit from Eq. (51):

lim
t→∞

f(v, t|v0, t0) = p(v). (52)

From the transition probability f(v, t|v0, t0) one can construct joint probability distribu-

tions for arbitrary sequences of n-points in the velocity-time plane. Due to the Markovian



16

character of Eq. (1), the joint probability distribution p(vn, tn; ...; v2, t2; v1, t1; v0, t0), which

contains the probability to find the object at the successive points (v0, t0) → (v1, t1) →

(v2, t2) → ... → (vn, tn) in the velocity-time plane, is just given by the product of n transi-

tion probabilities f(vn, tn|vn−1, tn−1):

p(vn, tn; ...; v2, t2; v1, t1 : v0, t0) = f(vn, tn|vn−1, tn−1) · · ·f(v2, t2|v1, t1)f(v1, t1|v0, t0),(53)

where it is assumed that the object is fixed with the initial velocity v0 at the initial time t0.

Associated with the joint probability distribution of Eq. (53) is then an extended optimal

path along the points (v0, t0) → (v1, t1) → (v2, t2) → ... → (vn, tn), which is determined from

the structure of the optimal paths in the v-s-plane, as discussed in Sec. IIIC. A segment

of the extended optimal path, between two neighboring points (vn, tn) and (vn−1, tn−1), is

either a direct or an indirect path depending on the relative location of these two points.

V. CONCLUSION

We have derived a complete characterization of the optimal paths of the de Gennes’

equation (1) within the path integral framework. The optimal paths can be divided into

two classes: a) Direct optimal paths, with continuous v(s) and v̇(s), which physically can be

considered as representing a pure slip motion of the object. b) Indirect optimal paths, with

continuous v(s) and discontinuous v̇(s), which follow partly the v = 0 axis and represent

physically a stick-slip motion. We have shown that for a given initial point (v0, t0) the

optimal path will either be a direct or an indirect path depending on the location of the

final point (v, t) in the velocity-time plane (cf. Fig. 3). In the asymptotic time limit t → ∞

a finite final velocity v can only be reached by an indirect path.

This analysis of the optimal paths leads to an analytical result for the transition prob-

ability f(v, t|v0, t0) in the saddle-point approximation. The calculation of correction terms

to this result, such as the fluctuation factor F (v∗), Eq. (20), which takes into account the

second order term in the expansion of the action, Eq. (14), is left for future work. However,

we want to emphasize that higher order corrections leave the properties and the structure

of the optimal paths, and therefore also their slip and stick-slip character, unchanged.

From a physical point of view, the friction terms in Eq. (1) represent a very simple

phenomenological model of the solid/solid interaction between the object and the surface.



17

By studying generalizations of Eq. (1), incorporating, e.g., two dimensional or memory

effects, one could model more complicated surface properties, such as surface anisotropies

or defects. A comparison of such more realistic, but still phenomenological models, with

experiments will lead to a better understanding of the effects of surface inhomogeneities.

APPENDIX A: THE PREFACTORS B± AND C±

The basic solutions v+(s) and v−(s) are given by Eq. (22), where + refers to the upper

half of the v-s-plane and − to the lower half, respectively. The prefactors B+ and C+, for

the upper half plane, are determined by the boundary conditions, i.e., by the conditions that

the path is initially at (v0, t0) and ends at (v, t):

v+(t0) = v0, v+(t) = v. (A1)

Solving Eq. (22) under these boundary conditions for B+ and C+ yields

B+ =
et/τm(v + ∆τm) − et0/τm(v0 + ∆τm)

e2t/τm − e2t0/τm

, (A2)

C+ =
et/τm(v0 + ∆τm) − et0/τm(v + ∆τm)

e(t−t0)/τm − e−(t−t0)/τm

. (A3)

The prefactors B− and C−, for the lower half plane, are then obtained by simply changing

∆ → −∆ in Eqs. (A2) and (A3).
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