5,537 research outputs found

    Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2.

    Get PDF
    BackgroundIn the BOLERO-2 trial, everolimus (EVE), an inhibitor of mammalian target of rapamycin, demonstrated significant clinical benefit with an acceptable safety profile when administered with exemestane (EXE) in postmenopausal women with hormone receptor-positive (HR(+)) advanced breast cancer. We report on the incidence, time course, severity, and resolution of treatment-emergent adverse events (AEs) as well as incidence of dose modifications during the extended follow-up of this study.Patients and methodsPatients were randomized (2:1) to receive EVE 10 mg/day or placebo (PBO), with open-label EXE 25 mg/day (n = 724). The primary end point was progression-free survival. Secondary end points included overall survival, objective response rate, and safety. Safety evaluations included recording of AEs, laboratory values, dose interruptions/adjustments, and study drug discontinuations.ResultsThe safety population comprised 720 patients (EVE + EXE, 482; PBO + EXE, 238). The median follow-up was 18 months. Class-effect toxicities, including stomatitis, pneumonitis, and hyperglycemia, were generally of mild or moderate severity and occurred relatively early after treatment initiation (except pneumonitis); incidence tapered off thereafter. EVE dose reduction and interruption (360 and 705 events, respectively) required for AE management were independent of patient age. The median duration of dose interruption was 7 days. Discontinuation of both study drugs because of AEs was higher with EVE + EXE (9%) versus PBO + EXE (3%).ConclusionsMost EVE-associated AEs occur soon after initiation of therapy, are typically of mild or moderate severity, and are generally manageable with dose reduction and interruption. Discontinuation due to toxicity was uncommon. Understanding the time course of class-effect AEs will help inform preventive and monitoring strategies as well as patient education.Trial registration numberNCT00863655

    Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis.

    Get PDF
    IntroductionEffective treatments for hormone-receptor-positive (HR(+)) breast cancer (BC) following relapse/progression on nonsteroidal aromatase inhibitor (NSAI) therapy are needed. Initial Breast Cancer Trials of OraL EveROlimus-2 (BOLERO-2) trial data demonstrated that everolimus and exemestane significantly prolonged progression-free survival (PFS) versus placebo plus exemestane alone in this patient population.MethodsBOLERO-2 is a phase 3, double-blind, randomized, international trial comparing everolimus (10 mg/day) plus exemestane (25 mg/day) versus placebo plus exemestane in postmenopausal women with HR(+) advanced BC with recurrence/progression during or after NSAIs. The primary endpoint was PFS by local investigator review, and was confirmed by independent central radiology review. Overall survival, response rate, and clinical benefit rate were secondary endpoints.ResultsFinal study results with median 18-month follow-up show that median PFS remained significantly longer with everolimus plus exemestane versus placebo plus exemestane [investigator review: 7.8 versus 3.2 months, respectively; hazard ratio = 0.45 (95% confidence interval 0.38-0.54); log-rank P < 0.0001; central review: 11.0 versus 4.1 months, respectively; hazard ratio = 0.38 (95% confidence interval 0.31-0.48); log-rank P < 0.0001] in the overall population and in all prospectively defined subgroups, including patients with visceral metastases, [corrected] and irrespective of age. The incidence and severity of adverse events were consistent with those reported at the interim analysis and in other everolimus trials.ConclusionThe addition of everolimus to exemestane markedly prolonged PFS in patients with HR(+) advanced BC with disease recurrence/progression following prior NSAIs. These results further support the use of everolimus plus exemestane in this patient population. ClinicalTrials.gov #NCT00863655

    Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas

    Get PDF
    Loss of the tumor suppressor gene PTEN is implicated in breast cancer progression and resistance to targeted therapies, and is thought to promote tumorigenesis by activating PI3K signaling. In a transgenic model of breast cancer, Pten suppression using a tetracycline-regulatable short hairpin (sh)RNA cooperates with human epidermal growth factor receptor 2 (HER2/neu), leading to aggressive and metastatic disease with elevated signaling through PI3K and, surprisingly, the mitogen-activated protein kinase (MAPK) pathway. Restoring Pten function is sufficient to down-regulate both PI3K and MAPK signaling and triggers dramatic tumor regression. Pharmacologic inhibition of MAPK signaling produces similar effects to Pten restoration, suggesting that the MAPK pathway contributes to the maintenance of advanced breast cancers harboring Pten loss

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors

    Get PDF
    Current anticancer chemotherapy relies on a limited set of in vitro or indirect prognostic markers of tumor response to available drugs. A more accurate analysis of drug sensitivity would involve studying tumor response in vivo. To this end, we have developed an implantable device that can perform drug sensitivity testing of several anticancer agents simultaneously inside the living tumor. The device contained reservoirs that released microdoses of single agents or drug combinations into spatially distinct regions of the tumor. The local drug concentrations were chosen to be representative of concentrations achieved during systemic treatment. Local efficacy and drug concentration profiles were evaluated for each drug or drug combination on the device, and the local efficacy was confirmed to be a predictor of systemic efficacy in vivo for multiple drugs and tumor models. Currently, up to 16 individual drugs or combinations can be assessed independently, without systemic drug exposure, through minimally invasive biopsy of a small region of a single tumor. This assay takes into consideration physiologic effects that contribute to drug response by allowing drugs to interact with the living tumor in its native microenvironment. Because these effects are crucial to predicting drug response, we envision that these devices will help identify optimal drug therapy before systemic treatment is initiated and could improve drug response prediction beyond the biomarkers and in vitro and ex vivo studies used today. These devices may also be used in clinical drug development to safely gather efficacy data on new compounds before pharmacological optimization.National Cancer Institute (U.S.) (Innovative Molecular Analysis Technologies Program R21-CA177391)Kibur Medical, Inc

    Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer

    Get PDF
    Background Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. Methods A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1wt or ESR1Y537S, modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. Results Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. Conclusions Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER
    corecore