272 research outputs found

    Non-equilibrium phase transition in negotiation dynamics

    Get PDF
    We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to opinion and convention formation in a population of individuals. The negotiation process, as opposed to ``herding-like'' or ``bounded confidence'' driven processes, is based on a microscopic dynamics where memory and feedback play a central role. Our model displays a non-equilibrium phase transition from an absorbing state in which all agents reach a consensus to an active stationary state characterized either by polarization or fragmentation in clusters of agents with different opinions. We show the exystence of at least two different universality classes, one for the case with two possible opinions and one for the case with an unlimited number of opinions. The phase transition is studied analytically and numerically for various topologies of the agents' interaction network. In both cases the universality classes do not seem to depend on the specific interaction topology, the only relevant feature being the total number of different opinions ever present in the system.Comment: 4 pages, 4 figure

    Glass transition and random walks on complex energy landscapes

    Get PDF
    We present a simple mathematical model of glassy dynamics seen as a random walk in a directed, weighted network of minima taken as a representation of the energy landscape. Our approach gives a broader perspective to previous studies focusing on particular examples of energy landscapes obtained by sampling energy minima and saddles of small systems. We point out how the relation between the energies of the minima and their number of neighbors should be studied in connection with the network's global topology, and show how the tools developed in complex network theory can be put to use in this context

    Microscopic activity patterns in the Naming Game

    Get PDF
    The models of statistical physics used to study collective phenomena in some interdisciplinary contexts, such as social dynamics and opinion spreading, do not consider the effects of the memory on individual decision processes. On the contrary, in the Naming Game, a recently proposed model of Language formation, each agent chooses a particular state, or opinion, by means of a memory-based negotiation process, during which a variable number of states is collected and kept in memory. In this perspective, the statistical features of the number of states collected by the agents becomes a relevant quantity to understand the dynamics of the model, and the influence of topological properties on memory-based models. By means of a master equation approach, we analyze the internal agent dynamics of Naming Game in populations embedded on networks, finding that it strongly depends on very general topological properties of the system (e.g. average and fluctuations of the degree). However, the influence of topological properties on the microscopic individual dynamics is a general phenomenon that should characterize all those social interactions that can be modeled by memory-based negotiation processes.Comment: submitted to J. Phys.

    Connect and win: The role of social networks in political elections

    Get PDF
    Many real systems are made of strongly interacting networks, with profound consequences on their dynamics. Here, we consider the case of two interacting social networks and, in the context of a simple model, we address the case of political elections. Each network represents a competing party and every agent, on the election day, can choose to be either active in one of the two networks (vote for the corresponding party) or to be inactive in both (not vote). The opinion dynamics during the election campaign is described through a simulated annealing algorithm. We find that for a large region of the parameter space the result of the competition between the two parties allows for the existence of pluralism in the society, where both parties have a finite share of the votes. The central result is that a densely connected social network is key for the final victory of a party. However, small committed minorities can play a crucial role, and even reverse the election outcome

    Bio-linguistic transition and Baldwin effect in an evolutionary naming-game model

    Full text link
    We examine an evolutionary naming-game model where communicating agents are equipped with an evolutionarily selected learning ability. Such a coupling of biological and linguistic ingredients results in an abrupt transition: upon a small change of a model control parameter a poorly communicating group of linguistically unskilled agents transforms into almost perfectly communicating group with large learning abilities. When learning ability is kept fixed, the transition appears to be continuous. Genetic imprinting of the learning abilities proceeds via Baldwin effect: initially unskilled communicating agents learn a language and that creates a niche in which there is an evolutionary pressure for the increase of learning ability.Our model suggests that when linguistic (or cultural) processes became intensive enough, a transition took place where both linguistic performance and biological endowment of our species experienced an abrupt change that perhaps triggered the rapid expansion of human civilization.Comment: 7 pages, minor changes, accepted in Int.J.Mod.Phys.C, proceedings of Max Born Symp. Wroclaw (Poland), Sept. 2007. Java applet is available at http://spin.amu.edu.pl/~lipowski/biolin.html or http://www.amu.edu.pl/~lipowski/biolin.htm

    Agreement dynamics on small-world networks

    Get PDF
    In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in particular the small-world topology and study the convergence towards the global agreement as a function of the population size N as well as of the parameter p which sets the rate of rewiring leading to the small-world network. As long as p > > 1/N, there exists a crossover time scaling as N/p2 which separates an early one-dimensional–like dynamics from a late-stage mean-field–like behavior. At the beginning of the process, the local quasi–one-dimensional topology induces a coarsening dynamics which allows for a minimization of the cognitive effort (memory) required to the agents. In the late stages, on the other hand, the mean-field–like topology leads to a speed-up of the convergence process with respect to the one-dimensional case

    Mean-field diffusive dynamics on weighted networks

    Get PDF
    Diffusion is a key element of a large set of phenomena occurring on natural and social systems modeled in terms of complex weighted networks. Here, we introduce a general formalism that allows to easily write down mean-field equations for any diffusive dynamics on weighted networks. We also propose the concept of annealed weighted networks, in which such equations become exact. We show the validity of our approach addressing the problem of the random walk process, pointing out a strong departure of the behavior observed in quenched real scale-free networks from the mean-field predictions. Additionally, we show how to employ our formalism for more complex dynamics. Our work sheds light on mean-field theory on weighted networks and on its range of validity, and warns about the reliability of mean-field results for complex dynamics.Comment: 8 pages, 3 figure

    Consensus formation on adaptive networks

    Full text link
    The structure of a network can significantly influence the properties of the dynamical processes which take place on them. While many studies have been devoted to this influence, much less attention has been devoted to the interplay and feedback mechanisms between dynamical processes and network topology on adaptive networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks where people are more likely to maintain a social connection if their views and values are similar. In our study, we consider different variants of a model for consensus formation. Our investigations reveal that the adaptation of the network topology fosters cluster formation by enhancing communication between agents of similar opinion, though it also promotes the division of these clusters. The temporal behavior is also strongly affected by adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the early and late time evolution of the system are determined by the rewiring process. The investigation of a variant of the model reveals that the scenarios of transitions between consensus and polarized states are more robust on adaptive networks.Comment: 11 pages, 14 figure

    Voter models on weighted networks

    Get PDF
    We study the dynamics of the voter and Moran processes running on top of complex network substrates where each edge has a weight depending on the degree of the nodes it connects. For each elementary dynamical step the first node is chosen at random and the second is selected with probability proportional to the weight of the connecting edge. We present a heterogeneous mean-field approach allowing to identify conservation laws and to calculate exit probabilities along with consensus times. In the specific case when the weight is given by the product of nodes' degree raised to a power theta, we derive a rich phase-diagram, with the consensus time exhibiting various scaling laws depending on theta and on the exponent of the degree distribution gamma. Numerical simulations give very good agreement for small values of |theta|. An additional analytical treatment (heterogeneous pair approximation) improves the agreement with numerics, but the theoretical understanding of the behavior in the limit of large |theta| remains an open challenge.Comment: 21 double-spaced pages, 6 figure
    corecore