2,112 research outputs found

    Antioxidant oils and Salmonella enterica Typhimurium reduce tumor in an experimental model of hepatic metastasis

    Get PDF
    Fruit seeds high in antioxidants have been shown to have anticancer properties and enhance host protection against microbial infection. Recently we showed that a single oral dose of Salmonella enterica serovar Typhimurium expressing a truncated human interleukin-2 gene (SalpIL2) is avirulent, immunogenic, and reduces hepatic metastases through increased natural killer cell populations in mice. To determine whether antioxidant compounds enhance the antitumor effect seen in SalpIL2-treated animals, we assayed black cumin (BC), black raspberry (BR), and milk thistle (MT) seed oils for the ability to reduce experimental hepatic metastases in mice. In animals without tumor, BC and BR oil diets altered the kinetics of the splenic lymphocyte response to SalpIL2. Consistent with previous reports, BR and BC seed oils demonstrated independent antitumor properties and moderate adjuvant potential with SalpIL2. MT oil, however, inhibited the efficacy of SalpIL2 in our model. Based on these data, we conclude that a diet high in antioxidant oils promoted a more robust immune response to SalpIL2, thus enhancing its antitumor efficacy

    Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms

    Full text link
    We demonstrate a novel experimental arrangement which rotates a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.Comment: 7 pages, 5 figures, final versio

    Essential Metalloelement Chelates Facilitate Repair of Radiation Injury

    Get PDF
    Treatment with essential metalloelement (Cu, Fe, Mn, and Zn) chelates or combinations of them before and/or after radiation injury is a useful approach to overcoming radiation injury. No other agents are known to increase survival when they are used to treat after irradiation, in a radiorecovery treatment paradigm. These chelates may be useful in facilitating de novo syntheses of essential metalloelement-dependent enzymes required to repair radiation injury. Reports of radioprotection, which involves treatment before irradiation, with calcium-channel blockers, acyl Melatonin homologs, and substituted anilines, which may serve as chelating agents after biochemical modification in vivo, as well as Curcumin, which is a chelating agent, have been included in this review. These inclusions are intended to suggest additional approaches to combination treatments that may be useful in facilitating radiation recovery. These approaches to radioprotection and radiorecovery offer promise in facilitating recovery from radiation-induced injury experienced by patients undergoing radiotherapy for neoplastic disease and by individuals who experience environmental, occupational, or accidental exposure to ultraviolet, x-ray, or Îł-ray radiation. Since there are no existing treatments of radiation-injury intended to facilitate tissue repair, studies of essential metalloelement chelates and combinations of them, as well as combinations of them with existing organic radioprotectants, seem worthwhile

    Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications

    Get PDF
    Due to a lack of high-latitude ground-based and satellite-based data from traditional passive- and active-based measurements, the impact of aerosol particles on the Arctic region is one of the least understood factors contributing to recent Arctic sea ice changes. In this study, we investigated the feasibility of using the ultraviolet (UV) aerosol index (AI) parameter from the Ozone Monitoring Instrument (OMI), a semi-quantitative aerosol parameter, for quantifying spatiotemporal changes in UV-absorbing aerosols over the Arctic region. We found that OMI AI data are affected by an additional row anomaly that is unflagged by the OMI quality control flag and are systematically biased as functions of observing conditions, such as azimuth angle, and certain surface types over the Arctic region, resulting in an anomalous “ring” of climatologically high AI centered at about 70∘ N, surrounding an area of low AI over the pole. Two methods were developed in this study for quality-assuring the Arctic AI data. Using quality-controlled OMI AI data from 2005 through 2020, we found decreases in UV-absorbing aerosols in the spring months (April and May) over much of the Arctic region and increases in UV-absorbing aerosols in the summer months (June, July, and August) over northern Russia and northern Canada. Additionally, we found significant increases in the frequency and size of UV-absorbing aerosol events across the Arctic and high-Arctic (north of 80∘ N) regions for the latter half of the study period (2014–2020), driven primarily by a significant increase in boreal biomass-burning plume coverage.</p

    Inhibition of angiogenesis and suppression of colorectal cancer metastatic to the liver using the Sleeping Beauty Transposon System

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic colon cancer is one of the leading causes of cancer-related death worldwide, with disease progression and metastatic spread being closely associated with angiogenesis. We investigated whether an antiangiogenic gene transfer approach using the <it>Sleeping Beauty </it>(SB) transposon system could be used to inhibit growth of colorectal tumors metastatic to the liver.</p> <p>Results</p> <p>Liver CT26 tumor-bearing mice were hydrodynamically injected with different doses of a plasmid containing a transposon encoding an angiostatin-endostatin fusion gene (Statin AE) along with varying amounts of SB transposase-encoding plasmid. Animals that were injected with a low dose (10 ÎŒg) of Statin AE transposon plasmid showed a significant decrease in tumor formation only when co-injected with SB transposase-encoding plasmid, while for animals injected with a higher dose (25 ÎŒg) of Statin AE transposon, co-injection of SB transposase-encoding plasmid did not significantly affect tumor load. For animals injected with 10 ÎŒg Statin AE transposon plasmid, the number of tumor nodules was inversely proportional to the amount of co-injected SB plasmid. Suppression of metastases was further evident in histological analyses, in which untreated animals showed higher levels of tumor cell proliferation and tumor vascularization than animals treated with low dose transposon plasmid.</p> <p>Conclusion</p> <p>These results demonstrate that hepatic colorectal metastases can be reduced using antiangiogenic transposons, and provide evidence for the importance of the transposition process in mediating suppression of these tumors.</p

    Bragg spectroscopy of a cigar shaped Bose condensate in optical lattices

    Full text link
    We study properties of excited states of an array of weakly coupled quasi-two-dimensional Bose condensates by using the hydrodynamic theory. We calculate multibranch Bogoliubov-Bloch spectrums and its corresponding eigenfunctions. The spectrum of the axial excited states and its eigenfunctions strongly depends on the coupling among various discrete radial modes within a given symmetry. This mode coupling is due to the presence of radial trapping potential. The multibranch nature of the Bogoliubov-Bloch spectrum and its dependence on the mode-coupling can be realized by analyzing dynamic structure factor and momentum transferred to the system in Bragg spectroscopy experiments. We also study dynamic structure factor and momentum transferred to the condensate due to the Bragg spectroscopy experiment.Comment: 7 pages, 5 figures, to appear in Journal of Physics B: Atomic, Molecular & Optical Physic

    Students as co-creators of teaching approaches, course design and curricula: implications for academic developers

    Get PDF
    Within higher education, students’ voices are frequently overlooked in the design of teaching approaches, courses and curricula. In this paper we outline the theoretical background to arguments for including students as partners in pedagogical planning processes. We present examples where students have worked collaboratively in design processes along with the beneficial outcomes of these examples. Finally we focus on some of the implications and opportunities for academic developers of proposing collaborative approaches to pedagogical planning

    Low-Lying Excited States and Low-Temperature Properties of an Alternating Spin-1 / Spin-1/2 Chain : A DMRG study

    Get PDF
    We report spin wave and DMRG studies of the ground and low-lying excited states of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of the system. The ground state of a 2N spin system with spin-1 and spin-1/2 alternating from site to site and interacting via an antiferromagnetic exchange is found to be ferrimagnetic with total spin sG=N/2s_G=N/2 from both DMRG and spin wave analysis. Both the studies also show that there is a gapless excitation to a state with spin sG−1s_G-1 and a gapped excitation to a state with spin sG+1s_G+1. Surprisingly, the correlation length in the ground state is found to be very small from both the studies for this gapless system. For this very reason, we show that the ground state can be described by a variational ``ansatz'' of the product type. DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls' instability. The DMRG studies of magnetization, magnetic susceptibility (χ\chi) and specific heat show strong magnetic-field dependence. The product χT\chi T shows a minimum as a function of temperature(TT) at low-magnetic fields and the minimum vanishes at high-magnetic fields. This low-field behaviour is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature and the height of the maximum increases sharply at high magnetic fields. It is hoped that these studies will motivate experimental studies at high-magnetic fields.Comment: 22 pages in latex; 16 eps figures available upon reques

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis
    • 

    corecore