395 research outputs found

    Notes about the Caratheodory number

    Full text link
    In this paper we give sufficient conditions for a compactum in Rn\mathbb R^n to have Carath\'{e}odory number less than n+1n+1, generalizing an old result of Fenchel. Then we prove the corresponding versions of the colorful Carath\'{e}odory theorem and give a Tverberg type theorem for families of convex compacta

    Querying Visible and Invisible Information

    Get PDF
    We provide a wide-ranging study of the scenario where a subset of the relations in the schema are visible - that is, their complete contents are known - while the remaining relations are invisible. We also have integrity constraints (invariants given by logical sentences) which may relate the visible relations to the invisible ones. We want to determine which information about a query (a positive existential sentence) can be inferred from the visible instance and the constraints. We consider both positive and negative query information, that is, whether the query or its negation holds. We consider the instance-level version of the problem, where both the query and the visible instance are given, as well as the schema-level version, where we want to know whether truth or falsity of the query can be inferred in some instance of the schema

    Nash equilibria in random games

    Get PDF
    We consider Nash equilibria in 2-player random games and analyze a simple Las Vegas algorithm for finding an equilibrium. The algorithm is combinatorial and always finds a Nash equilibrium; on m × n payoff matrices, it runs in time O(m2n log log n + n2m log lo gm) with high probability. Our result follows from showing that a 2-player random game has a Nash equilibrium with supports of size two with high probability, at least 1 − O(1 / log n). Our main tool is a polytop

    Investigation of carbon sequestration processes of reconstructed grasslands and wetlands to aid ecosystem service-based decision making

    Get PDF
    In this paper, we analysed the effect of habitat reconstructions on some parameters characterizing the carbon exchange processes of ecosystems. Besides extending our knowledge on the ecophysiological functioning of different plant communities, our work was motivated by international policy goals as well: a considerable amount of degraded ecosystems and their services was declared in the European Union to be reconstructed in the next few years. These kinds of projects need detailed impact analyses and a methodological grounding. We would like to contribute to these goals with the results of field measurements carried out in an extensive habitat reconstruction area in the Egyek-Pusztakócs habitat complex (Hortobágy National Park, Eastern Hungary). In this paper, we analysed the results of carbon and nitrogen contents of soils and biomass samples and the average net ecosystem exchange values of the investigated ecosystem types. Our results show that natural or near-natural, well-structured grasslands have an outstanding carbon sequestration and storing potential in the studied landscape type, the restored grasslands lag behind in every parameters. In the process of secondary succession, the carbon exchange characteristics of the restored grasslands seem to follow mainly the species composition, and the effects of land management can modify the effects of regeneration from the point of view of ecophysiological functioning

    Fairly Allocating Contiguous Blocks of Indivisible Items

    Full text link
    In this paper, we study the classic problem of fairly allocating indivisible items with the extra feature that the items lie on a line. Our goal is to find a fair allocation that is contiguous, meaning that the bundle of each agent forms a contiguous block on the line. While allocations satisfying the classical fairness notions of proportionality, envy-freeness, and equitability are not guaranteed to exist even without the contiguity requirement, we show the existence of contiguous allocations satisfying approximate versions of these notions that do not degrade as the number of agents or items increases. We also study the efficiency loss of contiguous allocations due to fairness constraints.Comment: Appears in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point pPp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for απ/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point pPp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if pWqp \in W_q, qWpq \in W_p, and pqrp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem

    Non-Convex Representations of Graphs

    Get PDF
    We show that every plane graph admits a planar straight-line drawing in which all faces with more than three vertices are non-convex polygon
    corecore