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Abstract strategy Nash equilibria in succinctly specified games by
Fabrikant et al. [14]; a polynomial-time algorithm of Pa-
We consider Nash equilibria i-player random games  padimitriou and Roughgarden for finding Nash equilibria
and analyze a simple Las Vegas algorithm for finding an in multi-player symmetric game in which each player has
equilibrium. The algorithm is combinatorial and always a small number of strategies [30]; a proof that the Lemke-
finds a Nash equilibrium; om x n payoff matrices, itruns  Howson algorithm takes exponential time with all possible
in timeO(m?2nlog log n+n2m log log m) with high proba- initial pivots [32].
bility. Our main tool is a polytope formulation of equililari In this paper, we considerplayer games where the two
payoff matrices are chosen randomly. Our motivation is the
guestion of whether finding Nash equilibria is any easier in
random games compared to general games, that is, easier

1 Introduction “on average”. In a random game, every entry in each of the
matrices is drawn independently according to some proba-
The complexity of finding a Nash equilibrium in 2 bility distribution. We consider the uniform distributian

player game is perhaps the outstanding open problem in@" inte_rval and the st_antjard_ Normal distributibﬁo, 1).
algorithmic game theory [28]. In a 2-player game, the N the first case, the distribution of any setioéntries of a

first player, namely Alice, hasn pure strategiesS = payoff matrix is uniform in a-dimensional cube, while in
{o1,05...,0m} while the second player, namely Bob, has the second case it iskadimensional Normal. In fact, there

n pure strategie§” = {ry,7>...,m,}. We are given two  Nas been much work in this direction for a special case of

payoff matricesA and B for Alice and Bob, respectively. ~ 2-Player games, the zero-sum case. This case is equivalent
Here, theijth entry of A is the payoff to Alice when she 0 I.|n_ear programming. Mo'uv_ated by the question of ex-
playso; and Bob playsr;. A Nash equilibrium is a pair plaining the success of f[he simplex a!gorl_thm, Borgwardt
of mixed strategies (probability distributions)y such that ~ [7], Smale [34] and Megiddo [25] studied linear programs

givenz, the distributiony on’7 maximizesz” By, the pay- where the constraints are chosen randomly from spherically
off to Bob and simultaneously, given the distributionz symmetric distributions and showed that variants of the sim
onS maximizes:? Ay, the payoff to Alice. plex algorithm run in polynomial time. Besides simplex,

On the one hand, it is easy to check that a given pair of other simple methods (e.g., the perceptron algorithm) also
mixed strategies forms an equilibrium. On the other hand, WOrk for random linear programs, demonstrating that they
the best algorithms for finding a Nash equilibrium of an ar- have considerably more structure than arbitrary linear pro
bitrary 2-player game have exponential complexity. More- 9rams.
over, there is some evidence that finding an equilibriumis  Here we show random games are indeed much simpler
unlikely to be NP-hard [26, 27]. Determining the complex- than general games. Specifically, we show that with high
ity of finding equilibria has lead to much research in a vari- probability, there is a Nash equilibria in which the support
ety of directions, e.g., a quasi-polynomial-time algaritto of the mixed strategies of both players have small cardinal-
find anapproximateNash equilibrium due to Lipton et al. ity. We remark that in a random game the supports of each
[22]; an investigation into the complexity of finding pure player will have the same cardinality in a Nash equilibrium.
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fMassachusetts Institute of Technology. Supported in parNBF until an equilibrium is found. In fact, with high probabifit

award CCR-0307536. . only two phases will be required!
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FQRNT grant NC-98649. The key to our result is a reformulation of the problem
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in terms of random polytopes. For convenience, we will as-
sume thatn = n. We will see in Section 2 that, given a

mixed strategy for Alice (Bob), the supports of a best re-
sponse strategy for Bob (Alice) are precisely those sugport

that induce facets with non-negative normal vectors in an

associated random polytope. Consequently, the algorgthmi
problem of finding Nash equilibria can be tackled by con-
sidering problems relating to the number of points on the
convex hull of a set ofi random points inl dimensions. In

Section 3 we extend analysis of such random polytopes for
our purpose. This allows us to examine the quality of our '’

algorithm in Section 4. In particular, consider the convex
hull of n random points ind dimensions. LetV; denote

Proof. Any mixed strategy\ for Bob induces a poing €
conv(B®) wherey(\) = 37" | A\;b7. The expected payoff
to Bob of the mixed strategy is then justv - y. O

We will say that a facet of the polytope isefulif its
normal vector is honnegative. Similarly a face of any di-
mension is called useful if it is contained in some useful
facet. Our interest in useful facets comes from the fact that
only nonnegative vectors induce feasible mixed strategies
In particular, we obtain from Lemma 1 the following corol-

Corollary 2. LetS = {o1,...,04} andv > 0. Then
v/||v||1 is a mixed strategy ot$ for Alice, and the ver-

the expected number of points that lie on the boundary of tices of the face ironv(B*) with normalv > 0 are best

the convex hull (this will differ for the Normal and uniform

distributions). Then, our main theorem can be stated as fol-

lows.

Theorem 1. The probability that a random game contains
no Nash equilibria with supports of size at mdsis less

than
1@ (5 + o)

wheref(d) is a function of{ alone.

It is known thatN; grows as a function of. for both
the distributions we consider and so we get our algorithmic
result as a corollary.

1

n

1

Corollary 1. There is a combinatorial algorithm that finds
a Nash equilibrium in a random game and, with high prob-
ability, runs in timeO(n? log log n). O

In related work, McLennan and Berg [24] have studied
the expected number of Nash equilibria for certain random
games. Finally, we remark that extending our work to al-
low matrix entries to have arbitrary means would give a
polynomial-time randomized algorithm for finding approx-
imate Nash equilibria in arbitrary games.

2 A Geometric Interpretation of Nash Equi-
libria

We begin by showing how Nash equilibria are closely re-

lated to random polytopes. For any subset of Alice’s strate-

gies,S C S, with |S| = d, let BS = {b7,...,b3} be the
set of subcolumns oB induced bysS, i.e., whose entries
correspond to the rows . We will view the elements of
B?® as points inR4, and denote byonv(B*) the polytope
corresponding to the convex hull of these points. Similarly
AT is the set of subrows ol induced byl" C 7.

Lemmal. Apointz € B? is abestresponse to some mixed
strategyr with supportS if and only if x maximizes - y
among all pointgy € conv(B?).

response strategies for Bob. O

Next, consider subsetS C S, 7 C 7 that are sup-
ports of mixed strategies that form a Nash equilibrium. Let
B®(T) be the set of vectors iB* that correspond t@', and
let A7(S) be the set of vectors iA” that correspond to the
rows of S. To induce a Nash equilibrium, we need that each
x € BY(T) is a best response to some mixed strategy
with supportS, and each; € AT (S) is a best response to
some mixed strategy with supportT'. In other words, the
points in A7 (9) lie on a useful facet ofonv(A”) and the
points in B%(T) lie on a useful facet ofonv(B?). Since
the entries ofA and B are chosen at random, the corre-
sponding point sets will be in general position and so for a
Nash equilibrium, we must hays| = |T|.

So Nash equilibria in random games are closely related
to the polytopes produced by random points. In particular,
we need to study the faces of random polytopes. Towards
this end, letV; be the expected number of faces of dimen-
sioni — 1 induced byconv(P) whereP is a set of: random
points (V; is number verticesy,; number of facets). Again,
since the points are in general position any such face is in-
duced by exactly points. We have the following simple
relationship between number of faces of a given dimension
and the number of points on the convex hull.

Lemma 2. The number of faces ebnuv(P) of dimension
s is at Ieast;ll(dgl) times the number of points on the
convex hull.

Proof. Every vertex of the convex hull is contained in at
leastd facets. Take a vertex and consider any facets
containingz. These induce a set ¢f") faces of dimen-
sions that containe. The union of these sets may contain at
mostd copies of any face. Moreover, as all the points are in
general position, every-dimensional face contains exactly
s+ 1 points. Thus, summing over all vertices, we obtain the
result. O

It follows that N1 > —15 (") V1. Our interest is in

the expected number of useful faces of dimension 1,



denotedV;". We will use the following notation. We write
A < B if there is a fixed functiory (d), of the dimension
d alone, such thatl < f(d)B. We will need the simple
observation thal} > N > N, /29

3 Random Polytopes under Gaussian and
Uniform Distributions

In this section we present the main technical results we

will need for analysing our Las Vegas algorithm. First we
need to develop some understanding of the behavioly; of
There has already been a large amount of work studjing
for various distributions; for a rather comprehensive syrv
see [39]. We begin with two basic results regarding the uni-
form and Normal distributions, respectively.

Theorem 2. [12] Givenn points drawn independently and
uniformly from ad-dimensional unit cube, the expected
number of points on the convex hulls(logn)4—1. O

Theorem 3. [31] Given n points inR¢ with coordinates
drawn independently fronv (0, 1), the expected number of
points on the convex hull 5 (logn)z (@1, O

We will be be interested in the following more general
question. LetP = {z1,...,2,} be a set of i.i.d. random
points from a distribution with density functioh Let F' be
the set of subsets of points that induces faceisof(P),
and letY; andY; be two subsets o . What is the probabil-
ity that bothY; andY- induce facets, i.eR(Y1,Y2 € F)?
The probability that one subs&} induces a facet is well-
understood for many important distributions, including th

Theorem 4. AssumeX is a convex body iiR?, vol(K) = 1
and0 < e < go(d) whereey(d) is a constant depending
only ond. Let K (¢) denote the set of points frof that can
be cut off by a cap of volume Then there are convex sets
Cy,...,C,, and pairwise disjoint convex se¥,...,C/,
such thatC! c C; for everyi such that every cap of volume
¢ is contained in one of th€; and, further,

m

60; cK(clJa
1

1
vol(C?) Z e andvol(C;) < e.
O

The meaning is thak (¢) can be economically covered,
that is, covered without much overlap, by the sefsvhere
eachC; has volume a constant times This implies that
vol(K (e)) ~ me. The extra condition that each cap of vol-
umese is contained in one of th€; will be very useful when
estimating an integral in the proof of Lemma 5.

WhenK is the unit cube, the sef$; will be axis-parallel

dyadic boxes:
d

[Ti0.27%

1

with integersf; > 0 summing tof and2~/ ~ ¢. This is
only the covering near a single vertex, the origin, of the uni
cube, which is extended to a complete covering using the
symmetries of the cube in the obvious way. One can define
cap coverings for other distributions as well, replacing th
volume of each se&f; by its measure. Such a covering exists

for the Normal distribution if the complement of a suitably

Gaussian and the cube. We prove the following refinementsjarge ball is deleted.

(that may be of independent interest).

Lemma 3. Suppos¢ is the Normal density or the uniform
density over a cube. If;, Y5 are disjoint subsets @, then

P(Y1,Y2 € F) SP(Y; € F)?

Lemma4. Suppos¢ is the Normal density or the uniform
density over a cube. [f, Y, are subsets oP with [Y; N
Y| > 0, then

< P(Y1 S F)2
~ P(Y1 N Yz is a face okonv(P))

P(Y1,Y2 € F)

The proof of these lemmas for the Normal distribution
can be carried out directly using the density function. We

give such a proof of Lemma 3 at the end of this section (the

proof of Lemma 4 is similar). For a cube, however, things
are more complicated and we will use anonomic cap-
covering[6]. The next theorem is implied by the results of
[4].

We will use cap coverings to prove the following gener-
alization of Lemma 4. We focus now on the case whéis
the unit cube, but the proof applies whenever a cap covering
exists.

Lemma 5. Let S, S*,T,T* be sets of cardinalityl with
SNS* =X, TNT*=Y,|X|=5>0,]Y|=t>0.
We denote byk = QISYS'l ¢ R?¢# the unit cube
in R?4—s. Assumery,...,z, are uniform, independent,
random points fromK. Assumel’ = {zi,...,z4} and
T = {x1,..., ¢, Td41,- .., Taq—t }. LELF(S) denote the
facets of the convex hull of thes projected ontd?®, and
similarly for 7(S*). Then,

. . Inn 2d—s—1

P[T € F(S) andT* € F(S*)] < %

Proof. Let P = {x1,...,z,} as before. It follows from
the main theorem in [5] that the random polytapev(P)
containsK (c(Inn)/n) with probability at leastl — n =3¢
if the constant is chosen large enough. Note thaflife



F(S), thenT is a face of the convex hull afonv(P) as
well.

We fix a cap covering/; given by Theorem 4 for ev-
ery large enougly for the unit cube. We writd |S and
L|S* for the projection of a sek ¢ RI°YS™l onto R!S! and
RI"1, resp. We need a special minimal c@fT") of K that
containsT: namely, writingC(7'|.S) for the minimal cap
containingT’|S in Q5! we let

C(T) = C(T|S) x QIS
Similarly,

C(T*) = C(T*|S*) x QI\"1.

Note that bottC'(T") andC(T™*) are caps of andC(T") N
C(T*) is non-empty. This implies tha&t(7") N C(T*) con-
tains a vertex of<.

Let X[E] be the indicator of the everif. Define D to
be the event that’(T') N C(T™*) contains the origin. Now,
writing P for the probability in the Lemma, we have
P

X[T € F(S)|X[T* € F(S)|dxs . .. d,

IN

x X[T € F(S)] X[T* € F(S*)da .. .dx,

By the remark at the beginning of this proof we can restrict
integration to the subset whevel(C(T)) < ¢(Inn)/n and
the same fo” (7). With this we only lose: 3¢ in proba-
bility. We replace this restricted integral by a double stm i
the following way.

Givenzy,...,zqg andC(T) with 0 € C(T), let f be the
largest integer witlC'(T") C C for someCy € My where
My is the cap covering far = 2-7. Of course, the”; that
matters is of the form

IT [0.277]

1€SUS*

with f; = 0 when: € S*\ S. Let Mf1 be the set of these
elements of\/;. Obviously,vol(C(T)) > c(d)2~/ with a
suitable smalk(d) > 0, and similarly forC(7*). Analo-
gously, we get &’; from M, for eachC(7™), and the ones
that matter are collected |M2 C M,.

We integrate then on eamj € M1 andC; e M for
1,9 > fo. Assumingg > f, thelntegrand is at most

(1—e(d)2 )"~ 240 (vol (Cp ol (C5))* (vol (€N )

sincexy,...,z; come fromCy N Cyy Teg1,- -, T4 from
Cy, andde, -y T2q—¢ from C, Wh|le the rest of the;;
come fromK\C( ). Summing this for aly > f > fo,
and allCy € M}, all C; € M7 we are lead to the sum

PIDIL IS

f2fog92f

d)2=Fnj2y2-Fld-tg-gld-t) g,

where

Spg =Y > (vol(CyNCy))!

M} M2

Now C'y N Cj is an axis-parallel dyadic box i, so for

someh > g, it is equal to a uniqué&’, € M;. Conse-
quently,
Spa <y 27" Y N(f.9)
h>g CreMy

whereN (f, g) is the number of pairé’; andC;; with Cj,
CyNC;. ForafixedCy, itis not hard to see tha¥ (f, g)
(2h — f — g+ 1)*. Further,|M},| =~ h?¢=5~1, Thus

<

Sf,g S Z27hth2d7571(2h —g- f+ 1)5
h>g

The rest is a computation: one shows first that, is
dominated by the term when= g. (This is done by com-
paring theh + 1st andhth terms.) Then the next sum

o>t exp{—c(d)2~Fn/2}2-f(d-tg-9ld-t) g,
S Xysslexp{—c(d)2n/2}2- @0
><2—9(d—t)2—gt92d—s—1(g _ f + 1)5]

is again dominated by the term whenr= f (again by com-
paring consecutive terms), implying that

P< Z exp{—

I=fo

d)2ffn/2}2ff(2d7t)f2dfsfl'

Finally, the last sum is dominated by the term wized =
1/n. (For f with 2= < 1/n this is done by comparing
consecutive terms, again. Fémwith 2=/ > 1/n the factor

exp{—c(d)2~'n/2} is very small except for finitely many
terms.) So we have
(ln n)2d—s—1
P —

O

Remark 1. This method works whed N 7* = (). Then
(vol(Cy N Cy))* = 1 sincet = 0 and M, does not appear
at all. With a similar computation one could prove Claim 1
(see later) in the following form:

P|T € F(S)andT* € F(S")]
< P[T € F(S)|P[T* € F(5")].

Remark 2. For general convex bodies the outcome depends
on Sy, and then onV (f,g). For smooth convex bodies
N(f,g) is a constant, and the computation is simpler.

We now give a more direct proof of Lemma 3 for the
case of the Normal distribution.



Proof. We prove the lemma directly for the Normal density. and then fory, ..., 24, we have
We write

(1= VYD) 2 df (z1) ... df (z2q)
T1,.., 224,V (Y2) >V (Y1)

P(V1,Ys € F) — Ad)? / (1= V()" du(t1)dv(ts)
_ / X[Vs € FIX[Ys € Fldf(z1)-- - df () Wi,
2 2 5
z1,...T0, ERI < A(d)(;/o)lgsd) /(1 _ V(tl))n_QdB_dtlt?(d_l) dt,
™
t1
1,2 n—2d

Assume thatvy = {z1,...,24}, Y2 = {Zgy1,..., 224} A(d)QV‘)l(Sd)Q/ 1— e 2! o—dt?p2d—2 gy
For a subset’, let H(Y) be the hyperplane spanning - (2m)d 2V/2nt

andV(Y') be measure of the distribution in the halfspace od i
bounded by this hyperplane not containing the origin. Then < n(nn)
the above probability can be bounded as

Since (@12
| _
Py e ;) 2 LT
(2)
P(Y1,Y2 € F) (1) the lemma follows for the Normal density. O

4 A LasVegasAlgorithm

We now have the tools needed to analyse our very simple
algorithm. Recall that the algorithm exhaustively cheaks f
) ) . Nash equilibria with supports of size then for Nash equi-
We now estimate this whef is the standard Normal |iprig with supports of size, etc., until we find a Nash equi-
density inR*.  Clearly, VO@ dep_end_s only on th_e dis- librium. There are(Z)2 pairs of supports of sizé and de-
tance off (Y1) from the origin. So, it will be convenient to termining whether a pair of supports induce a Nash equilib-

pafamet”z.e in terms of hyperplanes, and pos:itions onthéM.jm can be done in polynomial-time via a linear program.
This is achieved by the Blaschke-Petkantschin formula. Forrhus, provided that our game has a Nash equilibrium in-

a spherically symmetric density functighwe have, duced by supports of constant size, we obtain a polynomial

time algorithm. We will show that with high probability, a
random game hasax 2 equilibrium.

More generally, we consider the probability that there is
/ g(@r,. . wa) df (x1) - - df (z4) no d x d Nash equilibrium in a random game. L&tand
T1,...,zg€ERY T be strategy subsets of Alice and Bob respectively, where

S|=1|T| =d. We letF(T) = {51, 5,...,5,} the set of
= A(d)// 9(@1, .- za)dfp(z1) -+ df g (za)dp(H). 1|‘a<|:ets| of| the polytopeo(nvaT;{ with nonneg;)gtive normal
H :ggd-l)-flat6 vectors (her&(p) = N, j ); eachS; corresponds to the set of
bt rows that induce the facet. We also defiR€T") to be the set
of all faces contained in facets 8f(T"). To avoid confusion
between row and column vectors, the sg{§) andG ()
Here A(d) is a function ofd alone andiu(H) is the mea-  are defined similarly w.r.t. the polytopmnv(B°). Then
sure induced oid — 1)-flats determined by picking points S € F(T) iff Alice’s strategies induced by are all best
from f. By spherical symmetrydu(H) = dhdu where responses to some mixed strategy by Bob on the strategy set
u IS a unit vector (normal tdd) and i is the distance of  induced byI". Note thatS andT" induce a Nash equilibrium,
H from the origin. For the Normal density, the measure denoted byS—T, if and only if S € F(T') andT € G(S).
of a random point on a flat is determined by its position We denote by€sr the event thatS—T', and byXgsr the
on the flat and the distance of the flat to the origin, i.e., indicator variable for this event. By the independence of
dfg(x1) = dfnp(z1). The integrand on the RHS of (1) the payoff matrices for Alice and Bob, the probability that
depends only on the distance &f(Y;) from the origin. S—T is exactly the product of the probabilities thsite
Thus, applying the formula twice, once fog,1, ...,z F(T)andT € G(S5).



We begin with the expected numberdk d Nash equi-
libria.

Lemma 6. The expected number of Nash equilibria in a
random game is

E( > XST):(N;)Q.
S,T:|S|=|T|=d

Proof. Given S let us first evaluate the probability thate
G(S) for someT. We have seen that this is the case only if
BS(T) induces a useful facet iB“. Thus, this probability
is exactly
Ny
(@)
Similarly, we also have that
Jr
Na_

(@)

P(SeF(T) =

By the independence of the payoff matrices, we obtain
2

NT

P(S<T) = (—5)) . Summing up over all pairs$, T,

the lemma follows.

Let . denote the above expectation. We are interested in

the probability that the random variable= ZS,T XsT >
0. We will use the notation

A =
(S,T),(S",T"):(S,T)N(S",T")

P(Est N Esitr),

where signifies that the eventr and&s:r+ are depen-

strategies of *. So

Z Z (ST andS*—T7)

st (S,T),( )-
|X|= S7|Y\

> Z (S e F(T

st (8,T),(S T*)'
|X|=s,]Y|=

xP(T € G(S)andT™ € G(5%)))
22 Z (S € F(T)andS* € F(T*))
LS (ST

)andS* € F(T™))

|X|=s,|Y|=
xP(T € G(S) andT* € G(S™))]
+> Z (S € F(T)andS* € F(T*))
5,t>1(8,T),(S*,T*):
|X|=s |Y| t

xP(T € G(S) andT™* € G(S*))]
21 + No.

The following claims will be useful in bounding these
terms.

Claim 1. For n sufficiently larger thand, if T NT* = 0
then

P(T eG(S)ANT* €G(S")) < <%)

d

Proof. Let G—7(S*) be the set of useful facets of the poly-
tope induced by the rows &§* if we ignore thed points
corresponding to the columns @f, defineG=""(S) simi-
larly. Then clearly

dent. We remark that such a dependency arises if and onlyP(Z" € G(S) AT™ € G(57))

if eitherSN S’ £ QorTNT’ # (. Our interest inA arises
because, applying standard techniques [2], we obtain:

Var(Z)
E(Z)?

E(Z) + A
E(2)2

P(Z=0) < <

(2)

The next lemma bounds.

Lemma?7. In arandom game

(& * )

Proof. Let X = S*NnSandY =T*NT, s = |X|and
t = |Y|. We remark that only the cardinalities of these in-
tersections will be of consequence. Recall that F(T*)
means that the vertices correspondingidorm a useful

A< p?

~

< PTeg T (S)AT e G™T(5)

P(T e g T (9)|T* € G (S*)P(T* € G~T(5*))

But P(T € ¢~77(9)|T* € G~7(S*)) is maximised
whensS = S*. The result then follows from Lemma 3.O0

Similarly, applying Lemma 4, or Lemma 5, we obtain

Claim 2. For n sufficiently larger thar,

P(T € G(S)andT* € G(S*)) <

We are now ready to complete the proof of Lemma 7.

face (i.e., are all best responses) in the game induced by théirst we boundA; from above. Observe that sin¢e= 0



the eventsS € F(T') andS* € G(T™*) are independent.

Therefore,

P(S € F(T)andS* € F(T*)) = P(S € F(T))?

- (§)

T)andS™* € F(T™))

Applying Claim 1 we have

>, 2|

s>1(8,1),(S*, T )
|X|=s,|Y|=

N = 56.7:

xP(T € G(S) andT™ € G(5*))]

A

2. X

s>1(8,T),(S*,T* )
|X|=s,|Y|=

However,

(V)
4 > 1
(d) s:d>s5>1(S,T),(S*,T"):
X155, ¥ |=0

= 200600

N

Thus,

~

A< B
n

Next, we work towards bounding.,. Applying Claim
2, we obtain

Ny = Y Y [P(S € F(T)andS* € F(T*))
5,t>1(S,T),(S*,T*):
|X|=s,|Y|=t
xP(T € G(S) andT™* € G(S*))]
3> (NG G)
~ n 4
$,t>1(S,T),(S*,T*): () NSV
|X|=s,]Y|=t
Now we have
d\ (d
12 () () < p?
S NSNS (N2
Thus
2 /LQ
~ (V)
and this completes the proof of Lemma 7. O

Theorem 1 now follows from (2) and Lemma 7. Then,
by Theorems 2 and 3, which imply that"™ becomes much
larger thanf (d) asn increases, we obtain our result for ran-
dom games in which the payoff entries are either uniformly
or Normally distributed. In fact, it is enough to look for
2 x 2 equilibria.

It follows that the run time of the algorithm is
O(m?2nloglogn + n?*mloglogm), with high probability.

To see this observe that we need to calculate the con-
vex hull of n points for each pair of strategies of Alice,
and calculate the convex hull e points for each pair of
strategies of Bob. Since we can find the convex hulk of
points in2 dimensions in time)(k log k), whereh is the
number of points on the convex hull [21], this takes time
O(m?2nloglogn + n?mloglogm). If a pair of strategies
for Alice and a pair of strategies for Bob mutually induce
facets with non-negative normals in the convex hull associ-
ated with the other pair then we have a Nash equilibrium.
The normals to these facets also give the probability distri
butions on the strategy supports (at the Nash equilibrium).
Thus our algorithm is entirely combinatorial.

5 Concluding Remarks

We have show that finding equilibria on average is easy.
This raises several questions: (i) Can we extend the asalysi
to more general distributions? Our result is unaffected by
linear transformations of the payoff matrices. So, for exam
ple, each matrix can be chosen from an arbitrary Gaussian.
(ii) Does our algorithm have polynomial expected running
time? (iii) We crucially use the fact that the mean of each
entry is zero. Is this necessary? An algorithm that works
for Gaussian entries with arbitrary means (and time poly-
nomial in the largest variance), akin to smoothed analysis
[35], would give a polynomial-time randomized algorithm
for finding approximate Nash equilibria in arbitrary games
[19]: add random Gaussians to the entries of the given pay-
off matrices; an equilibrium of the perturbed game will be
an approximate equilibrium of the original game with high
probability, given that the variance of the Gaussians idisma
enough. The current best algorithm for finding approximate
equilibria has quasi-polynomial complexity [22].

Finally, we observe that finding approximate equilibria
in random games is quite easy: for both the distributions
we consider, with high probability there will be many pure
strategy approximate equilibria and hence one of them can
be found in sublinear time.
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