
Nash Equilibria in Random Games

Imre Bárány∗
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Abstract

We consider Nash equilibria in2-player random games
and analyze a simple Las Vegas algorithm for finding an
equilibrium. The algorithm is combinatorial and always
finds a Nash equilibrium; onm× n payoff matrices, it runs
in timeO(m2n log log n+n2m log log m) with high proba-
bility. Our main tool is a polytope formulation of equilibria.

1 Introduction

The complexity of finding a Nash equilibrium in a2-
player game is perhaps the outstanding open problem in
algorithmic game theory [28]. In a 2-player game, the
first player, namely Alice, hasm pure strategiesS =
{σ1, σ2 . . . , σm} while the second player, namely Bob, has
n pure strategiesT = {τ1, τ2 . . . , τn}. We are given two
payoff matricesA andB for Alice and Bob, respectively.
Here, theijth entry ofA is the payoff to Alice when she
playsσi and Bob playsτj . A Nash equilibrium is a pair
of mixed strategies (probability distributions)x, y such that
givenx, the distributiony onT maximizesxT By, the pay-
off to Bob and simultaneously, giveny, the distributionx
onS maximizesxT Ay, the payoff to Alice.

On the one hand, it is easy to check that a given pair of
mixed strategies forms an equilibrium. On the other hand,
the best algorithms for finding a Nash equilibrium of an ar-
bitrary 2-player game have exponential complexity. More-
over, there is some evidence that finding an equilibrium is
unlikely to be NP-hard [26, 27]. Determining the complex-
ity of finding equilibria has lead to much research in a vari-
ety of directions, e.g., a quasi-polynomial-time algorithm to
find anapproximateNash equilibrium due to Lipton et al.
[22]; an investigation into the complexity of finding pure
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strategy Nash equilibria in succinctly specified games by
Fabrikant et al. [14]; a polynomial-time algorithm of Pa-
padimitriou and Roughgarden for finding Nash equilibria
in multi-player symmetric game in which each player has
a small number of strategies [30]; a proof that the Lemke-
Howson algorithm takes exponential time with all possible
initial pivots [32].

In this paper, we consider2-player games where the two
payoff matrices are chosen randomly. Our motivation is the
question of whether finding Nash equilibria is any easier in
random games compared to general games, that is, easier
“on average”. In a random game, every entry in each of the
matrices is drawn independently according to some proba-
bility distribution. We consider the uniform distributionon
an interval and the standard Normal distributionN(0, 1).
In the first case, the distribution of any set ofk entries of a
payoff matrix is uniform in ak-dimensional cube, while in
the second case it is ak-dimensional Normal. In fact, there
has been much work in this direction for a special case of
2-player games, the zero-sum case. This case is equivalent
to linear programming. Motivated by the question of ex-
plaining the success of the simplex algorithm, Borgwardt
[7], Smale [34] and Megiddo [25] studied linear programs
where the constraints are chosen randomly from spherically
symmetric distributions and showed that variants of the sim-
plex algorithm run in polynomial time. Besides simplex,
other simple methods (e.g., the perceptron algorithm) also
work for random linear programs, demonstrating that they
have considerably more structure than arbitrary linear pro-
grams.

Here we show random games are indeed much simpler
than general games. Specifically, we show that with high
probability, there is a Nash equilibria in which the supports
of the mixed strategies of both players have small cardinal-
ity. We remark that in a random game the supports of each
player will have the same cardinality in a Nash equilibrium.
As a result, the following naive heuristic is a Las Vegas al-
gorithm for finding Nash equilibria: exhaustively check for
Nash equilibria with supports of cardinalityi = 1, 2, . . .
until an equilibrium is found. In fact, with high probability
only two phases will be required!

The key to our result is a reformulation of the problem
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in terms of random polytopes. For convenience, we will as-
sume thatm = n. We will see in Section 2 that, given a
mixed strategy for Alice (Bob), the supports of a best re-
sponse strategy for Bob (Alice) are precisely those supports
that induce facets with non-negative normal vectors in an
associated random polytope. Consequently, the algorithmic
problem of finding Nash equilibria can be tackled by con-
sidering problems relating to the number of points on the
convex hull of a set ofn random points ind dimensions. In
Section 3 we extend analysis of such random polytopes for
our purpose. This allows us to examine the quality of our
algorithm in Section 4. In particular, consider the convex
hull of n random points ind dimensions. LetN1 denote
the expected number of points that lie on the boundary of
the convex hull (this will differ for the Normal and uniform
distributions). Then, our main theorem can be stated as fol-
lows.

Theorem 1. The probability that a random game contains
no Nash equilibria with supports of size at mostd is less
than

f(d)

(

1

n
+

1

(N1)2

)

wheref(d) is a function ofd alone.

It is known thatN1 grows as a function ofn for both
the distributions we consider and so we get our algorithmic
result as a corollary.

Corollary 1. There is a combinatorial algorithm that finds
a Nash equilibrium in a random game and, with high prob-
ability, runs in timeO(n3 log log n).

In related work, McLennan and Berg [24] have studied
the expected number of Nash equilibria for certain random
games. Finally, we remark that extending our work to al-
low matrix entries to have arbitrary means would give a
polynomial-time randomized algorithm for finding approx-
imate Nash equilibria in arbitrary games.

2 A Geometric Interpretation of Nash Equi-
libria

We begin by showing how Nash equilibria are closely re-
lated to random polytopes. For any subset of Alice’s strate-
gies,S ⊆ S, with |S| = d, let BS = {bS

1 , . . . , bS
n} be the

set of subcolumns ofB induced byS, i.e., whose entries
correspond to the rows ofS. We will view the elements of
BS as points inRd, and denote byconv(BS) the polytope
corresponding to the convex hull of these points. Similarly
AT is the set of subrows ofA induced byT ⊆ T .

Lemma 1. A pointx ∈ BS is a best response to some mixed
strategyν with supportS if and only if x maximizesν · y
among all pointsy ∈ conv(BS).

Proof. Any mixed strategyλ for Bob induces a pointy ∈
conv(BS) wherey(λ) =

∑n
i=1 λib

S
i . The expected payoff

to Bob of the mixed strategyλ is then justν · y.

We will say that a facet of the polytope isuseful if its
normal vector is nonnegative. Similarly a face of any di-
mension is called useful if it is contained in some useful
facet. Our interest in useful facets comes from the fact that
only nonnegative vectors induce feasible mixed strategies.
In particular, we obtain from Lemma 1 the following corol-
lary.

Corollary 2. Let S = {σ1, . . . , σd} and ν ≥ 0. Then
ν/||ν||1 is a mixed strategy onS for Alice, and the ver-
tices of the face inconv(BS) with normalν ≥ 0 are best
response strategies for Bob.

Next, consider subsetsS ⊆ S, T ⊆ T that are sup-
ports of mixed strategies that form a Nash equilibrium. Let
BS(T ) be the set of vectors inBS that correspond toT , and
let AT (S) be the set of vectors inAT that correspond to the
rows ofS. To induce a Nash equilibrium, we need that each
x ∈ BS(T ) is a best response to some mixed strategyν
with supportS, and eachy ∈ AT (S) is a best response to
some mixed strategyλ with supportT . In other words, the
points inAT (S) lie on a useful facet ofconv(AT ) and the
points inBS(T ) lie on a useful facet ofconv(BS). Since
the entries ofA and B are chosen at random, the corre-
sponding point sets will be in general position and so for a
Nash equilibrium, we must have|S| = |T |.

So Nash equilibria in random games are closely related
to the polytopes produced by random points. In particular,
we need to study the faces of random polytopes. Towards
this end, letNi be the expected number of faces of dimen-
sioni−1 induced byconv(P) whereP is a set ofn random
points (N1 is number vertices,Nd number of facets). Again,
since the points are in general position any such face is in-
duced by exactlyi points. We have the following simple
relationship between number of faces of a given dimension
and the number of points on the convex hull.

Lemma 2. The number of faces ofconv(P) of dimension
s is at least 1

s+1

(

d−1
s

)

times the number of points on the
convex hull.

Proof. Every vertex of the convex hull is contained in at
leastd facets. Take a vertexx and consider anyd facets
containingx. These induce a set of

(

d−1
s

)

faces of dimen-
sions that containx. The union of these sets may contain at
mostd copies of any face. Moreover, as all the points are in
general position, everys-dimensional face contains exactly
s+1 points. Thus, summing over all vertices, we obtain the
result.

It follows thatNs+1 ≥ 1
s+1

(

d−1
s

)

N1. Our interest is in
the expected number of useful faces of dimensioni − 1,



denotedN+
i . We will use the following notation. We write

A . B if there is a fixed functionf(d), of the dimension
d alone, such thatA ≤ f(d)B. We will need the simple
observation thatN+

s & N+
1 & N1/2d.

3 Random Polytopes under Gaussian and
Uniform Distributions

In this section we present the main technical results we
will need for analysing our Las Vegas algorithm. First we
need to develop some understanding of the behaviour ofNi.
There has already been a large amount of work studyingNi

for various distributions; for a rather comprehensive survey
see [39]. We begin with two basic results regarding the uni-
form and Normal distributions, respectively.

Theorem 2. [12] Givenn points drawn independently and
uniformly from ad-dimensional unit cube, the expected
number of points on the convex hull is& (log n)d−1.

Theorem 3. [31] Given n points inR
d with coordinates

drawn independently fromN(0, 1), the expected number of
points on the convex hull is& (log n)

1
2
(d−1).

We will be be interested in the following more general
question. LetP = {x1, . . . , xn} be a set of i.i.d. random
points from a distribution with density functionf . LetF be
the set of subsets of points that induces facets ofconv(P),
and letY1 andY2 be two subsets ofX . What is the probabil-
ity that bothY1 andY2 induce facets, i.e.,P(Y1, Y2 ∈ F )?
The probability that one subsetY1 induces a facet is well-
understood for many important distributions, including the
Gaussian and the cube. We prove the following refinements
(that may be of independent interest).

Lemma 3. Supposef is the Normal density or the uniform
density over a cube. IfY1, Y2 are disjoint subsets ofP , then

P(Y1, Y2 ∈ F ) . P(Y1 ∈ F )2

Lemma 4. Supposef is the Normal density or the uniform
density over a cube. IfY1, Y2 are subsets ofP with |Y1 ∩
Y2| > 0, then

P(Y1, Y2 ∈ F ) .
P(Y1 ∈ F )2

P(Y1 ∩ Y2 is a face ofconv(P))

The proof of these lemmas for the Normal distribution
can be carried out directly using the density function. We
give such a proof of Lemma 3 at the end of this section (the
proof of Lemma 4 is similar). For a cube, however, things
are more complicated and we will use aneconomic cap-
covering[6]. The next theorem is implied by the results of
[4].

Theorem 4. AssumeK is a convex body inRd, vol(K) = 1
and 0 < ε < ε0(d) whereε0(d) is a constant depending
only ond. LetK(ε) denote the set of points fromK that can
be cut off by a cap of volumeε. Then there are convex sets
C1, . . . , Cm and pairwise disjoint convex setsC′

1, . . . , C
′
m

such thatC′
i ⊂ Ci for everyi such that every cap of volume

ε is contained in one of theCi and, further,

m
⋃

1

C′
i ⊂ K(ε) ⊂

m
⋃

1

Ci

vol(C′
i) & ε andvol(Ci) . ε.

The meaning is thatK(ε) can be economically covered,
that is, covered without much overlap, by the setsCi where
eachCi has volume a constant timesε. This implies that
vol(K(ε)) ∼ mε. The extra condition that each cap of vol-
umeε is contained in one of theCi will be very useful when
estimating an integral in the proof of Lemma 5.

WhenK is the unit cube, the setsCi will be axis-parallel
dyadic boxes:

d
∏

1

[0, 2−fi ]

with integersfi ≥ 0 summing tof and2−f ≈ ε. This is
only the covering near a single vertex, the origin, of the unit
cube, which is extended to a complete covering using the
symmetries of the cube in the obvious way. One can define
cap coverings for other distributions as well, replacing the
volume of each setCi by its measure. Such a covering exists
for the Normal distribution if the complement of a suitably
large ball is deleted.

We will use cap coverings to prove the following gener-
alization of Lemma 4. We focus now on the case whenK is
the unit cube, but the proof applies whenever a cap covering
exists.

Lemma 5. Let S, S∗, T, T ∗ be sets of cardinalityd with
S ∩ S∗ = X , T ∩ T ∗ = Y , |X | = s > 0, |Y | = t > 0.
We denote byK = Q|S∪S∗| ⊂ R

2d−s the unit cube
in R

2d−s. Assumex1, . . . , xn are uniform, independent,
random points fromK. AssumeT = {x1, . . . , xd} and
T ∗ = {x1, . . . , xt, xd+1, . . . , x2d−t}. LetF(S) denote the
facets of the convex hull of thexis projected ontoRS, and
similarly forF(S∗). Then,

P[T ∈ F(S) andT ∗ ∈ F(S∗)] .
(lnn)2d−s−1

n2d−t
.

Proof. Let P = {x1, . . . , xn} as before. It follows from
the main theorem in [5] that the random polytopeconv(P)
containsK(c(lnn)/n) with probability at least1 − n−3d

if the constantc is chosen large enough. Note that ifT ∈



F(S), thenT is a face of the convex hull ofconv(P) as
well.

We fix a cap coveringMf given by Theorem 4 for ev-
ery large enoughf for the unit cube. We writeL|S and
L|S∗ for the projection of a setL ⊂ R

|S∪S∗| ontoR|S| and
R|S∗|, resp. We need a special minimal capC(T ) of K that
containsT : namely, writingC(T |S) for the minimal cap
containingT |S in Q|S| we let

C(T ) = C(T |S) × Q|S∗\S|.

Similarly,

C(T ∗) = C(T ∗|S∗) × Q|S\S∗|.

Note that bothC(T ) andC(T ∗) are caps ofK andC(T )∩
C(T ∗) is non-empty. This implies thatC(T )∩C(T ∗) con-
tains a vertex ofK.

Let χ[E] be the indicator of the eventE. DefineD to
be the event thatC(T ) ∩ C(T ∗) contains the origin. Now,
writing P for the probability in the Lemma, we have

P =

∫

K

. . .

∫

K

χ[T ∈ F(S)] χ[T ∗ ∈ F(S∗)]dx1 . . . dxn

≤ 2d

∫

K

. . .

∫

K

χ[D] ×

× χ[T ∈ F(S)] χ[T ∗ ∈ F(S∗)]dx1 . . . dxn.

By the remark at the beginning of this proof we can restrict
integration to the subset wherevol(C(T )) ≤ c(lnn)/n and
the same forC(T ∗). With this we only losen−3d in proba-
bility. We replace this restricted integral by a double sum in
the following way.

Givenx1, . . . , xd andC(T ) with 0 ∈ C(T ), let f be the
largest integer withC(T ) ⊂ Cf for someCf ∈ Mf where
Mf is the cap covering forε = 2−f . Of course, theCf that
matters is of the form

∏

i∈S∪S∗

[0, 2−fi ]

with fi = 0 wheni ∈ S∗ \ S. Let M1
f be the set of these

elements ofMf . Obviously,vol(C(T )) ≥ c(d)2−f with a
suitable smallc(d) > 0, and similarly forC(T ∗). Analo-
gously, we get aC∗

g from Mg for eachC(T ∗), and the ones
that matter are collected inM2

g ⊂ Mg.
We integrate then on eachCf ∈ M1

f andC∗
g ∈ M2

g for
f, g ≥ f0. Assumingg ≥ f , the integrand is at most

(1−c(d)2−f)n−(2d−t)(vol(Cf )vol(C∗
g ))d−t(vol(Cf∩C∗

g ))t

sincex1, . . . , xt come fromCf ∩ C∗
g , xt+1, . . . , xd from

Cf , andxd+1, . . . , x2d−t from C∗
g , while the rest of thexi

come fromK \ C(T ). Summing this for allg ≥ f ≥ f0,
and allCf ∈ M1

f , all C∗
g ∈ M2

g we are lead to the sum
∑

f≥f0

∑

g≥f

exp{−c(d)2−fn/2}2−f(d−t)2−g(d−t)Sf,g

where
Sf,g =

∑

M1
f

∑

M2
g

(vol(Cf ∩ C∗
g ))t

Now Cf ∩ C∗
g is an axis-parallel dyadic box inK, so for

someh ≥ g, it is equal to a uniqueCh ∈ Mh. Conse-
quently,

Sf,g ≤
∑

h≥g

2−ht
∑

Ch∈Mh

N(f, g)

whereN(f, g) is the number of pairsCf andC∗
g with Ch =

Cf ∩C∗
g . For a fixedCh, it is not hard to see thatN(f, g) .

(2h − f − g + 1)s. Further,|Mh| ≈ h2d−s−1. Thus

Sf,g .
∑

h≥g

2−hth2d−s−1(2h − g − f + 1)s.

The rest is a computation: one shows first thatSf,g is
dominated by the term whenh = g. (This is done by com-
paring theh + 1st andhth terms.) Then the next sum

∑

g≥f exp{−c(d)2−fn/2}2−f(d−t)2−g(d−t)Sf,g

.
∑

g≥f [exp{−c(d)2−fn/2}2−f(d−t)

×2−g(d−t)2−gtg2d−s−1(g − f + 1)s]

is again dominated by the term wheng = f (again by com-
paring consecutive terms), implying that

P .
∑

f≥f0

exp{−c(d)2−fn/2}2−f(2d−t)f2d−s−1.

Finally, the last sum is dominated by the term when2−f =
1/n. (For f with 2−f < 1/n this is done by comparing
consecutive terms, again. Forf with 2−f > 1/n the factor
exp{−c(d)2−fn/2} is very small except for finitely many
terms.) So we have

P .
(lnn)2d−s−1

n2d−t
.

Remark 1. This method works whenT ∩ T ∗ = ∅. Then
(vol(Cf ∩ C∗

g ))t = 1 sincet = 0 andMh does not appear
at all. With a similar computation one could prove Claim 1
(see later) in the following form:

P[T ∈ F(S) andT ∗ ∈ F(S∗)]

. P[T ∈ F(S)] P[T ∗ ∈ F(S∗)].

Remark 2. For general convex bodies the outcome depends
on Sf,g and then onN(f, g). For smooth convex bodies
N(f, g) is a constant, and the computation is simpler.

We now give a more direct proof of Lemma 3 for the
case of the Normal distribution.



Proof. We prove the lemma directly for the Normal density.
We write

P(Y1, Y2 ∈ F )

=

∫

x1,...xn∈Rd

χ[Y1 ∈ F ] χ[Y2 ∈ F ] df(x1) · · · df(xn)

Assume thatY1 = {x1, . . . , xd}, Y2 = {xd+1, . . . , x2d}
For a subsetY , let H(Y ) be the hyperplane spanningY
andV (Y ) be measure of the distribution in the halfspace
bounded by this hyperplane not containing the origin. Then
the above probability can be bounded as

P(Y1, Y2 ∈ F ) (1)

≤ 2

∫

x1,...,x2d,V (Y2)≥V (Y1)

(1 − V (Y1))
n−2d df(x1) · · · df(x2d)

We now estimate this whenf is the standard Normal
density inR

d. Clearly, V (Y1) depends only on the dis-
tance ofH(Y1) from the origin. So, it will be convenient to
parametrize in terms of hyperplanes, and positions on them.
This is achieved by the Blaschke-Petkantschin formula. For
a spherically symmetric density functionf we have,

∫

x1,...,xd∈Rd

g(x1, . . . , xd) df(x1) · · · df(xd)

= ∆(d)

∫

H:(d-1)-flat

∫

x1,...,xd∈H

g(x1, . . . , xd)dfH(x1) · · ·dfH(xd)dµ(H).

Here∆(d) is a function ofd alone anddµ(H) is the mea-
sure induced on(d−1)-flats determined by pickingd points
from f . By spherical symmetry,dµ(H) = dhdu where
u is a unit vector (normal toH) andh is the distance of
H from the origin. For the Normal density, the measure
of a random point on a flat is determined by its position
on the flat and the distance of the flat to the origin, i.e.,
dfH(x1) = dfh(x1). The integrand on the RHS of (1)
depends only on the distance ofH(Y1) from the origin.
Thus, applying the formula twice, once forxd+1, . . . , x2d

and then forx1, . . . , xd, we have
∫

x1,...,x2d,V (Y2)≥V (Y1)

(1 − V (Y1))
n−2d df(x1) . . . df(x2d)

= ∆(d)2
∫

t1≤t2

(1 − V (t1))
n−2d dν(t1)dν(t2)

≤ ∆(d)2vol(Sd)
2

(2π)d

∫

t1

(1 − V (t1))
n−2de−dt21t

2(d−1)
1 dt1

≤ ∆(d)2vol(Sd)
2

(2π)d

∫

t

(

1 − e−
1
2
t2

2
√

2πt

)n−2d

e−dt2t2d−2 dt

. n−2d(lnn)d−1

Since

P(Y1 ∈ F ) &
(ln n)(d−1)/2

(

n
d

)

the lemma follows for the Normal density.

4 A Las Vegas Algorithm

We now have the tools needed to analyse our very simple
algorithm. Recall that the algorithm exhaustively checks for
Nash equilibria with supports of size1, then for Nash equi-
libria with supports of size2, etc., until we find a Nash equi-
librium. There are

(

n
d

)2
pairs of supports of sized and de-

termining whether a pair of supports induce a Nash equilib-
rium can be done in polynomial-time via a linear program.
Thus, provided that our game has a Nash equilibrium in-
duced by supports of constant size, we obtain a polynomial
time algorithm. We will show that with high probability, a
random game has a2 × 2 equilibrium.

More generally, we consider the probability that there is
no d × d Nash equilibrium in a random game. LetS and
T be strategy subsets of Alice and Bob respectively, where
|S| = |T | = d. We letF(T ) = {S1, S2, . . . , Sp} the set of
facets of the polytopeconv(AT ) with nonnegative normal
vectors (hereE(p) = N+

d ); eachSi corresponds to the set of
rows that induce the facet. We also defineF̄(T ) to be the set
of all faces contained in facets ofF(T ). To avoid confusion
between row and column vectors, the setsG(S) and Ḡ(S)
are defined similarly w.r.t. the polytopeconv(BS). Then
S ∈ F(T ) iff Alice’s strategies induced byS are all best
responses to some mixed strategy by Bob on the strategy set
induced byT . Note thatS andT induce a Nash equilibrium,
denoted byS↔T , if and only if S ∈ F(T ) andT ∈ G(S).
We denote byEST the event thatS↔T , and byχST the
indicator variable for this event. By the independence of
the payoff matrices for Alice and Bob, the probability that
S↔T is exactly the product of the probabilities thatS ∈
F(T ) andT ∈ G(S).



We begin with the expected number ofd × d Nash equi-
libria.

Lemma 6. The expected number of Nash equilibria in a
random game is

E





∑

S,T :|S|=|T |=d

χST



 = (N+
d )2.

Proof. GivenS let us first evaluate the probability thatT ∈
G(S) for someT . We have seen that this is the case only if
BS(T ) induces a useful facet inBS . Thus, this probability
is exactly

N+
d
(

n
d

) .

Similarly, we also have that

P(S ∈ F(T )) =
N+

d
(

n
d

) .

By the independence of the payoff matrices, we obtain

P(S↔T ) =

(

N+

d

(n

d)

)2

. Summing up over all pairs,S, T ,

the lemma follows.

Let µ denote the above expectation. We are interested in
the probability that the random variableZ =

∑

S,T
χST >

0. We will use the notation

△ =
∑

(S,T ),(S′,T ′):(S,T )1(S′,T ′)

P(EST ∧ ES′T ′),

where1 signifies that the eventsEST andES′T ′ are depen-
dent. We remark that such a dependency arises if and only
if eitherS ∩S′ 6= ∅ or T ∩ T ′ 6= ∅. Our interest in△ arises
because, applying standard techniques [2], we obtain:

P(Z = 0) ≤ V ar(Z)

E(Z)2
≤ E(Z) + △

E(Z)2
(2)

The next lemma bounds∆.

Lemma 7. In a random game

△ . µ2

(

1

n
+

1

(N+
1 )2

)

.

Proof. Let X = S∗ ∩ S andY = T ∗ ∩ T , s = |X | and
t = |Y |. We remark that only the cardinalities of these in-
tersections will be of consequence. Recall thatX ∈ F̄(T ∗)
means that the vertices corresponding toX form a useful
face (i.e., are all best responses) in the game induced by the

strategies ofT ∗. So

△ =
∑

s,t

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=t

P(S↔T andS∗↔T ∗)

=
∑

s,t

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=t

[P(S ∈ F(T ) andS∗ ∈ F(T ∗))

×P(T ∈ G(S) andT ∗ ∈ G(S∗)))

= 2
∑

s≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=0

[P(S ∈ F(T ) andS∗ ∈ F(T ∗))

×P(T ∈ G(S) andT ∗ ∈ G(S∗))]

+
∑

s,t≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=t

[P(S ∈ F(T ) andS∗ ∈ F(T ∗))

×P(T ∈ G(S) andT ∗ ∈ G(S∗))]

= 2△1 + △2.

The following claims will be useful in bounding these
terms.

Claim 1. For n sufficiently larger thand, if T ∩ T ∗ = 0
then

P(T ∈ G(S) ∧ T ∗ ∈ G(S∗)) .

(

N+
d
(

n
d

)

)2

Proof. Let G−T (S∗) be the set of useful facets of the poly-
tope induced by the rows ofS∗ if we ignore thed points
corresponding to the columns ofT ; defineG−T∗

(S) simi-
larly. Then clearly

P(T ∈ G(S) ∧ T ∗ ∈ G(S∗))

≤ P(T ∈ G−T∗

(S) ∧ T ∗ ∈ G−T (S∗))

= P(T ∈ G−T∗

(S)|T ∗ ∈ G−T (S∗))P(T ∗ ∈ G−T (S∗))

But P(T ∈ G−T∗

(S)|T ∗ ∈ G−T (S∗)) is maximised
whenS = S∗. The result then follows from Lemma 3.

Similarly, applying Lemma 4, or Lemma 5, we obtain

Claim 2. For n sufficiently larger thand,

P(T ∈ G(S) andT ∗ ∈ G(S∗)) .
(N+

d )2
(

n
t

)

(

n
d

)2
N+

t

We are now ready to complete the proof of Lemma 7.
First we bound△1 from above. Observe that sincet = 0



the eventsS ∈ F(T ) andS∗ ∈ G(T ∗) are independent.
Therefore,

P(S ∈ F(T ) andS∗ ∈ F(T ∗)) = P(S ∈ F(T ))2

=

(

N+
d
(

n
d

)

)2

Applying Claim 1 we have

△1 =
∑

s≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=0

[P(S ∈ F(T ) andS∗ ∈ F(T ∗))

×P(T ∈ G(S) andT ∗ ∈ G(S∗))]

.
∑

s≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=0

(N+
d )4
(

n
d

)4

However,

(N+
d )4
(

n
d

)4

∑

s:d≥s≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=0

1

=
µ2

(

n
d

)4

∑

s:d≥s≥1

(

n

d

)(

d

s

)(

n − d

d − s

)(

n

d

)(

n − d

d

)

.
µ2

n

Thus,

△1 .
µ2

n

Next, we work towards bounding△2. Applying Claim
2, we obtain

△2 =
∑

s,t≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=t

[P(S ∈ F(T ) andS∗ ∈ F(T ∗))

×P(T ∈ G(S) andT ∗ ∈ G(S∗))]

.
∑

s,t≥1

∑

(S,T ),(S∗,T∗):
|X|=s,|Y |=t

(N+
d )4

(

n
s

)(

n
t

)

(

n
d

)4
N+

s N+
t

Now we have

µ2
∑

s,t≥1

(

d
s

)(

d
t

)

N+
s N+

t

.
µ2

(N+
1 )2

Thus

△2 .
µ2

(N+
1 )2

and this completes the proof of Lemma 7.

Theorem 1 now follows from (2) and Lemma 7. Then,
by Theorems 2 and 3, which imply thatN+

1 becomes much
larger thanf(d) asn increases, we obtain our result for ran-
dom games in which the payoff entries are either uniformly
or Normally distributed. In fact, it is enough to look for
2 × 2 equilibria.

It follows that the run time of the algorithm is
O(m2n log log n + n2m log log m), with high probability.
To see this observe that we need to calculate the con-
vex hull of n points for each pair of strategies of Alice,
and calculate the convex hull ofm points for each pair of
strategies of Bob. Since we can find the convex hull ofk
points in2 dimensions in timeO(k log h), whereh is the
number of points on the convex hull [21], this takes time
O(m2n log log n + n2m log log m). If a pair of strategies
for Alice and a pair of strategies for Bob mutually induce
facets with non-negative normals in the convex hull associ-
ated with the other pair then we have a Nash equilibrium.
The normals to these facets also give the probability distri-
butions on the strategy supports (at the Nash equilibrium).
Thus our algorithm is entirely combinatorial.

5 Concluding Remarks

We have show that finding equilibria on average is easy.
This raises several questions: (i) Can we extend the analysis
to more general distributions? Our result is unaffected by
linear transformations of the payoff matrices. So, for exam-
ple, each matrix can be chosen from an arbitrary Gaussian.
(ii) Does our algorithm have polynomial expected running
time? (iii) We crucially use the fact that the mean of each
entry is zero. Is this necessary? An algorithm that works
for Gaussian entries with arbitrary means (and time poly-
nomial in the largest variance), akin to smoothed analysis
[35], would give a polynomial-time randomized algorithm
for finding approximate Nash equilibria in arbitrary games
[19]: add random Gaussians to the entries of the given pay-
off matrices; an equilibrium of the perturbed game will be
an approximate equilibrium of the original game with high
probability, given that the variance of the Gaussians is small
enough. The current best algorithm for finding approximate
equilibria has quasi-polynomial complexity [22].

Finally, we observe that finding approximate equilibria
in random games is quite easy: for both the distributions
we consider, with high probability there will be many pure
strategy approximate equilibria and hence one of them can
be found in sublinear time.

References

[1] F. Affentranger and J. Wieacker, “On the convex hull
of a uniform random points in a simpled-polytope”,



Discrete and Computational Geometry, 6, pp291-305,
1991.

[2] N. Alon and J. Spencer,The Probabilistic Method, 2nd
edition, Wiley, 2000.

[3] D. Avis and K. Fukuda, “A pivoting algorithm for
convex hulls and vertex enumeration of arrangements
and polyhedra”,Discrete Computational Geometry, 8,
pp295-313, 1992.
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